People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hidayat, Taufiq
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Development of experimental techniques for the phase equilibrium study in the Pb-Fe-O-S-Si system involving gas, slag, matte, lead metal and tridymite phasescitations
- 2022Experimental study, thermodynamic calculations and industrial implications of slag/matte/metal equilibria in the Cu–Pb–Fe–O–S–Si systemcitations
- 2020Experimental measurement and thermodynamic model predictions of the distributions of Cu, As, Sb and Sn between liquid lead and PbO–FeO–Fe2O3–SiO2 slagcitations
- 2020Thermodynamic assessment of the CaO–Cu2O–FeO–Fe2O3 systemcitations
- 2020The influence of temperature and matte grade on gas-slag-matte-tridymite equilibria in the Cu-Fe-O-S-Si system at p (SO2) = 0.25 atmcitations
- 2019Experimental investigation and thermodynamic modeling of the distributions of Ag and Au between slag, matte, and metal in the Cu–Fe–O–S–Si systemcitations
- 2019Distributions of Ag, Bi, and Sb as minor elements between iron-silicate slag and copper in equilibrium with tridymite in the Cu-Fe-O-Si system at T = 1250 °C and 1300 °C (1523 K and 1573 K)citations
- 2019Combined experimental and thermodynamic modelling investigation of the distribution of antimony and tin between phases in the Cu-Fe-O-S-Si systemcitations
- 2019Characterisation of the Effect of Al2O3 on the Liquidus Temperatures of Copper Cleaning Furnace Slags Using Experimental and Modelling Approachcitations
- 2019Experimental Study and Thermodynamic Calculations of the Distribution of Ag, Au, Bi, and Zn Between Pb Metal and Pb–Fe–O–Si slagcitations
- 2019Integrated experimental study and thermodynamic modelling of the distribution of arsenic between phases in the Cu-Fe-O-S-Si systemcitations
- 2019Integrated experimental and thermodynamic modelling research for primary and recycling pyrometallurgy
- 2019Experimental and thermodynamic modelling study of the effects of Al2O3, CaO AND MgO impurities on gas/slag/matte/spinel equilibria in the “Cu2O”-“FeO”-SiO2-S-Al2O3-CaO-MgO system
- 2018Microanalysis and experimental techniques for the determination of multicomponent phase equilibria for non-ferrous smelting and recycling systemscitations
- 2017Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si System in controlled gas atmospheres: Experimental results at 1473 K (1200 A degrees C) and P(SO2)=0.25 atmcitations
- 2017High-temperature experimental and thermodynamic modelling research on the pyrometallurgical processing of coppercitations
- 2017The integration of plant sample analysis, laboratory studies, and thermodynamic modeling to predict slag-matte equilibria in nickel sulfide convertingcitations
- 2017Experimental and modelling research in support of energy savings and improved productivity in non-ferrous metal production and recycling
- 2017Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system in controlled atmospheres: Development of techniquecitations
- 2016Determination of thermodynamic properties of Ca4Fe9O17 by solid state EMF methodcitations
- 2015Recent advances in research for non-ferrous smelting and recycling
- 2013Critical assessment and thermodynamic modeling of the Cu-Fe-O systemcitations
- 2012Experimental study of ferrous calcium silicate slags: Phase equilibria at P(O(2)) between 10(-5) atm and 10(-7) atmcitations
- 2012Phase equilibria studies of Cu-O-Si systems in equilibrium with air and metallic copper and Cu-Me-O-Si systems (Me = Ca, Mg, Al, and Fe) in equilibrium with metallic coppercitations
Places of action
Organizations | Location | People |
---|