People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fiorio, Rudinei
Maastricht University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Root causes of post-consumer high-density polyethylene failing in new bottlescitations
- 2024Anchoring Ties:Improving Environmental Stress Crack Resistance in HDPE with Styrenic Triblock Copolymer
- 2023Soybean-Based Polyol as a Substitute of Fossil-Based Polyol on the Synthesis of Thermoplastic Polyurethanescitations
- 2022Tuning Thermal, Morphological, and Physicochemical Properties of Thermoplastic Polyurethanes (TPUs) by the 1,4-Butanediol (BDO)/Dipropylene Glycol (DPG) Ratio.citations
- 2022Setting the optimal laser power for sustainable powder bed fusion processing of elastomeric polyesters : a combined experimental and theoretical studycitations
- 2022Setting the optimal laser power for sustainable powder bed fusion processing of elastomeric polyesters : a combined experimental and theoretical studycitations
- 2022Exploiting mono‐ and hybrid nanocomposite materials for fused filament fabrication with acrylonitrile butadiene styrene as polymer matrixcitations
- 2022Upgrading theoretical models for understanding selective laser sintering parameters for polymeric materials
- 2022Exploiting mono‐ and hybrid nanocomposite materials for fused filament fabrication with <scp>acrylonitrile butadiene styrene</scp> as polymer matrixcitations
- 2022Tuning thermal, morphological, and physicochemical properties of thermoplastic polyurethanes (tpus) by the 1,4-butanediol (bdo)/dipropylene glycol (dpg) ratiocitations
- 2022The influence of the filament manufacturing technique on the degradation, mechanical properties, and dispersion state of ABS-graphene printed nanocomposites
- 2022Increasing the sustainability of the hybrid mold technique through combined insert polymeric material and additive manufacturing method designcitations
- 2021A combined experimental and modeling study for pellet-fed extrusion-based additive manufacturing to evaluate the impact of the melting efficiencycitations
- 2021Influence of machine type and consecutive closed-loop recycling on macroscopic properties for fused filament fabrication of acrylonitrile-butadiene-styrene partscitations
- 2020Influence of different stabilization systems and multiple ultraviolet A (UVA) aging/recycling steps on physicochemical, mechanical, colorimetric, and thermal-oxidative properties of ABScitations
- 2019A statistical analysis on the effect of antioxidants on the thermal-oxidative stability of commercial mass- and emulsion-polymerized ABScitations
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing
- 2019Improving mechanical properties for extrusion-based additive manufacturing of poly(lactic acid) by annealing and blending with poly(3-hydroxybutyrate)citations
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend development for extrusion-based additive manufacturing
- 2019Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend development for extrusion-based additive manufacturing
Places of action
Organizations | Location | People |
---|