People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pinna, Nicola
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Role of the Microstructure in the Li-Storage Performance of Spinel-Structured High-Entropy (Mn,Fe,Co,Ni,Zn) Oxide Nanofiberscitations
- 2023Single-Step Formation of Metal Oxide Nanostructures Wrapped in Mesoporous Silica and Silica–Niobia Catalysts for the Condensation of Furfural with Acetonecitations
- 2023Charge Storage Mechanism in Electrospun Spinel‐Structured High‐Entropy (Mn<sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Zn<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> Oxide Nanofibers as Anode Material for Li‐Ion Batteriescitations
- 2023Mesostructured γ-Al2O3-Based Bifunctional Catalysts for Direct Synthesis of Dimethyl Ether from CO2citations
- 2022ZnSnO3 or Zn2SnO4/SnO2 Hierarchical Material? Insight into the Formation of ZnSn(OH)6 Derived Oxidescitations
- 2022ALD‐Coated Mesoporous Iridium‐Titanium Mixed Oxides: Maximizing Iridium Utilization for an Outstanding OER Performancecitations
- 2022High-Entropy Spinel Oxides Produced via Sol-Gel and Electrospinning and Their Evaluation as Anodes in Li-Ion Batteriescitations
- 2022Atomic Layer Deposition of MoS2 Decorated TiO2 Nanotubes for Photoelectrochemical Water Splittingcitations
- 2021SnO2-SiO2 1D Core-Shell Nanowires Heterostructures for Selective Hydrogen Sensing
- 2021Impact of Different Intermediate Layers on the Morphology and Crystallinity of TiO2 Grown on Carbon Nanotubes by Atomic Layer Deposition
- 2020Comparing the Performance of Nb2O5 Composites with Reduced Graphene Oxide and Amorphous Carbon in Li‐ and Na‐Ion Electrochemical Storage Devices
- 2018Stabilization of Mesoporous Iron Oxide Films against Sintering and Phase Transformations via Atomic Layer Deposition of Alumina and Silicacitations
- 2017Hybrid organic–inorganic transition-metal phosphonates as precursors for water oxidation electrocatalystscitations
- 2016Are electrospun carbon/metal oxide composite fibers relevant electrode materials for Li-ion batteries?citations
- 2016Elemental Sulfur and Molybdenum Disulfide Composites for Li-S Batteries with Long Cycle Life and High-Rate Capabilitycitations
- 2015Gas sensing properties and p-type response of ALD TiO 2 coated carbon nanotubescitations
- 2015Stabilization of Titanium Dioxide Nanoparticles at the Surface of Carbon Nanomaterials Promoted by Microwave Heatingcitations
- 2015Chemical modification of graphene oxide through diazonium chemistry and its influence on the structure-properties relationships of graphene oxide-iron oxide nanocompositescitations
- 2015Chemical Modification of Graphene Oxide through Diazonium Chemistry and Its Influence on the Structure-Property Relationships of Graphene Oxide-Iron Oxide Nanocompositescitations
- 2014Colloidal polymers from dipolar assembly of cobalt-tipped CdSe@CdS nanorodscitations
- 2013Impact of the morphological characteristics on the supercapacitive electrochemical performances of FeOx/Reduced Graphene Oxide nanocompositescitations
- 2013Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2citations
- 2013THz nanocrystal acoustic vibrations from ZrO2 3D supercrystalscitations
- 2012Room-Temperature Hydrogen Sensing with Heteronanostructures Based on Reduced Graphene Oxide and Tin Oxidecitations
Places of action
Organizations | Location | People |
---|