People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Weatherup, Rs
University of Oxford
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024The Role of Salt Concentration in Stabilizing Charged Ni-Rich Cathode Interfaces in Li-ion Batteries
- 2024Removal and Reoccurrence of LLZTO Surface Contaminants under Glovebox Conditionscitations
- 2023Effect of current density on the solid electrolyte interphase formation at the lithium∣Li6PS5Cl interfacecitations
- 2022Gently does it!: in situ preparation of alkali metal–solid electrolyte interfaces for photoelectron spectroscopycitations
- 2022Effect of current density on the solid electrolyte interphase formation at the lithium∣Li6PS5Cl interfacecitations
- 2022In situ and operando characterisation of Li metal – Solid electrolyte interfacescitations
- 2022Electrolyte reactivity at the charged Ni-rich cathode interface and degradation in Li-ion batteriescitations
- 2022Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries.
- 2022Electronic interactions and stability issues at the copper-graphene interface in air and in alkaline solution under electrochemical controlcitations
- 2020Understanding metal organic chemical vapour deposition of monolayer WS2: the enhancing role of au substrate for simple organosulfur precursorscitations
- 2020The origin of chemical inhomogeneity in garnet electrolytes and its impact on the electrochemical performancecitations
- 2020Graphene-passivated nickel as an efficient hole-injecting electrode for large area organic semiconductor devicescitations
- 2020Understanding metal organic chemical vapour deposition of monolayer WS<sub>2</sub>: the enhancing role of Au substrate for simple organosulfur precursors.
- 2019Reactive intercalation and oxidation at the buried graphene-germanium interface
- 2018Compressive Behavior and Failure Mechanisms of Freestanding and Composite 3D Graphitic Foamscitations
- 2018Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitridecitations
- 2017Chemical vapour deposition of freestanding sub-60 nm graphene gyroidscitations
- 2017Low temperature growth of fully covered single-layer graphene using a CoCu catalystcitations
- 2016In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocompositescitations
- 2016In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foilscitations
- 2016Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposurecitations
- 2015Protecting nickel with graphene spin-filtering membranescitations
- 2015Spatial variability in large area single and few-layer CVD graphene
- 2014The role of the sp2:sp3 substrate content in carbon supported nanotube growthcitations
- 2014The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditionscitations
- 2014Low temperature growth of carbon nanotubes on tetrahedral amorphous carbon using Fe-Cu catalystcitations
- 2014Nitrogen controlled iron catalyst phase during carbon nanotube growthcitations
- 2012The phase of iron catalyst nanoparticles during carbon nanotube growthcitations
Places of action
Organizations | Location | People |
---|