People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baniasadi, Hossein
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Polypyrrole-modified flax fiber sponge impregnated with fatty acids as bio-based form-stable phase change materials for enhanced thermal energy storage and conversioncitations
- 2024Polypyrrole-modified flax fiber sponge impregnated with fatty acids as bio-based form-stable phase change materials for enhanced thermal energy storage and conversioncitations
- 2024Fabrication of biocomposite materials with polycaprolactone and activated carbon extracted from agricultural wastecitations
- 2024Exploring the potential of regenerated Ioncell fiber composites: a sustainable alternative for high-strength applicationscitations
- 2024Elucidating the enduring transformations in cellulose-based carbon nanofibers through prolonged isothermal treatmentcitations
- 2024Wood flour and Kraft lignin enable air-drying of the nanocellulose-based 3D-printed structurescitations
- 2024Recycled carbon fiber reinforced composites: Enhancing mechanical properties through co-functionalization of carbon nanotube-bonded microfibrillated cellulosecitations
- 2024A cradle-to-gate life cycle assessment of polyamide-starch biocomposites: carbon footprint as an indicator of sustainabilitycitations
- 2023Strontium-Substituted Nanohydroxyapatite-Incorporated Poly(lactic acid) Composites for Orthopedic Applications: Bioactive, Machinable, and High-Strength Propertiescitations
- 2023Flexible and conductive nanofiber textiles for leakage-free electro-thermal energy conversion and storagecitations
- 2023Heat-Induced Actuator Fibers: Starch-Containing Biopolyamide Composites for Functional Textilescitations
- 2023High-concentration lignin biocomposites with low-melting point biopolyamidecitations
- 2023Innovative integration of pyrolyzed biomass into polyamide 11: Sustainable advancements through in situ polymerization for enhanced mechanical, thermal, and additive manufacturing propertiescitations
- 2021Exfoliated clay nanocomposites of renewable long-chain aliphatic polyamide through in-situ polymerizationcitations
- 2021Sustainable composites of surface-modified cellulose with low-melting point polyamidecitations
- 2021Novel long-chain aliphatic polyamide/surface-modified silicon dioxide nanocomposites: in-situ polymerization and propertiescitations
- 2021Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineeringcitations
- 2021Selective Laser Sintering of Lignin-Based Compositescitations
- 20213D-Printed Thermoset Biocomposites Based on Forest Residues by Delayed Extrusion of Cold Masterbatch (DECMA)citations
- 2021High-Performance and Biobased Polyamide/Functionalized Graphene Oxide Nanocomposites through In Situ Polymerization for Engineering Applicationscitations
- 2015Investigation of thermomechanical properties of UHMWPE/graphene oxide nanocomposites prepared by in situ Ziegler–Natta polymerizationcitations
Places of action
Organizations | Location | People |
---|