People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Goey, Philip
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Iron powder particles as a clean and sustainable carriercitations
- 2024Cyclic reduction of combusted iron powdercitations
- 2024Towards an efficient metal energy carrier for zero–emission heating and power:Iron powder combustioncitations
- 2024Towards an efficient metal energy carrier for zero–emission heating and powercitations
- 2024The Heat Flux Method for hybrid iron–methane–air flamescitations
- 2024Thermoacoustic stability analysis and robust design of burner-deck-anchored flames using flame transfer function composition
- 2024Cyclic reduction of combusted iron powder:A study on the material properties and conversion reaction in the iron fuel cyclecitations
- 2024Iron powder particles as a clean and sustainable carrier:Investigating their impact on thermal outputcitations
- 2024Experimental and Statistical Analysis of Iron Powder for Green Heat Productioncitations
- 2024A numerical study of emission control strategies in an iron powder burnercitations
- 2023Particle Equilibrium Composition model for iron dust combustioncitations
- 2023Experimental Research On Iron Combustion At Eindhoven University of Technology
- 2023Experimental Research On Iron Combustion At Eindhoven University of Technology
- 2023The Heat Flux Method adapted for hybrid iron-methane-air flames
- 2023Characterising Iron Powder Combustion using an Inverted Bunsen Flame
- 2023Characterising Iron Powder Combustion using an Inverted Bunsen Flame
- 2023Burning Velocity Measurements for Flat Hybrid Iron-Methane-Air Flames
- 2023Size evolution during laser-ignited single iron particle combustioncitations
- 2022Phase transformations and microstructure evolution during combustion of iron powdercitations
- 2022Laminar burning velocity of hybrid methane-iron-air flames
- 2021Burn time and combustion regime of laser-ignited single iron particlecitations
- 2014On hydrogen addition effects in turbulent combustion using the Flamelet Generated Manifold technique
- 2011Gasoline port fuel injection on a heavy-duty diesel engine
- 2009Visualization of biomass pyrolysis and temperature imaging in a heated-grid reactorcitations
- 2008Reverse combustion : kinetically controlled and mass transfer controlled front structurescitations
Places of action
Organizations | Location | People |
---|