People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhao, Liang
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Identification and Suppression of Point Defects in Bromide Perovskite Single Crystals Enabling Gamma-Ray Spectroscopycitations
- 2023Regulatory utility of mechanistic modeling to support alternative bioequivalence approaches: A workshop overviewcitations
- 2022Au-Pd separation enhances bimetallic catalysis of alcohol oxidationcitations
- 2022Clinical Ocular Exposure Extrapolation for Ophthalmic Solutions Using PBPK Modeling and Simulationcitations
- 2021Finite element modeling of brittle and ductile modes in cutting of 3C-SiC
- 2020In Situ Observations of Freestanding Single-Atom-Thick Gold Nanoribbons Suspended in Graphene
- 2017In Situ Electron Driven Carbon Nanopillar-Fullerene Transformation through Cr Atom Mediationcitations
- 2014Nanoparticle vaccinescitations
Places of action
Organizations | Location | People |
---|
article
Au-Pd separation enhances bimetallic catalysis of alcohol oxidation
Abstract
In oxidation reactions catalysed by supported metal nanoparticles with oxygen as the terminal oxidant, the rate of the oxygen reduction can be a limiting factor. This is exemplified by the oxidative dehydrogenation of alcohols, an important class of reactions with modern commercial applications1–3. Supported gold nanoparticles are highly active for the dehydrogenation of the alcohol to an aldehyde4 but are less effective for oxygen reduction5,6. In contrast, supported palladium nanoparticles are less active than gold for dehydrogenation but offer high efficacy for oxygen reduction5,6. This imbalance can be overcome by alloying gold with palladium which gives enhanced activity to both reactions7,8; however, the electrochemical potential of the alloy is a compromise between that of the two metals meaning that although the oxygen reduction is improved in the alloy, the dehydrogenation activity is poorer. Here we show that by separating the gold and palladium components in bimetallic carbon-supported catalysts we can almost double the reaction rate beyond that achieved with a corresponding alloy catalyst. We demonstrate this using physical mixtures of carbon-supported monometallic gold and palladium and a bimetallic catalyst comprising separated gold and palladium regions. Furthermore, we demonstrate electrochemically that this enhancement is attributable to the coupling of separate redox processes occurring at isolated gold and palladium sites. The discovery of this novel catalytic effect, a cooperative redox enhancement (CORE), offers a new approach to the design of multi-component heterogeneous catalysts.