Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bonincontro, Danilo

  • Google
  • 6
  • 23
  • 185

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2020Continuous flow synthesis of bimetallic AuPd catalysts for the selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid27citations
  • 2020Pd/Au Based Catalyst Immobilization in Polymeric Nanofibrous Membranes via Electrospinning for the Selective Oxidation of 5-Hydroxymethylfurfural18citations
  • 2019Promotion Mechanisms of Au Supported on TiO2 in Thermal- And Photocatalytic Glycerol Conversion18citations
  • 2019Promotion Mechanisms of Au Supported on TiO 2 in Thermal- And Photocatalytic Glycerol Conversion18citations
  • 2019AuPd-nNiO as an effective catalyst for the base-free oxidation of HMF under mild reaction conditions86citations
  • 2019Promotion mechanisms of Au supported on TiO2 in thermal- and photocatalytic glycerol conversion18citations

Places of action

Chart of shared publication
Hutchings, Graham J.
1 / 12 shared
Cattaneo, Stefano
1 / 7 shared
Albonetti, Stefania
2 / 4 shared
Kiely, Christopher J.
1 / 6 shared
Dimitratos, Nikolaos
5 / 14 shared
Bere, Takudzwa
1 / 2 shared
Hutchings, Graham
3 / 5 shared
Liu, Xi
3 / 8 shared
Su, Ren
3 / 9 shared
Prati, Laura
4 / 14 shared
Niemantsverdriet, J. W. Hans
3 / 4 shared
Li, Yongwang
3 / 3 shared
Hansen, Thomas W.
3 / 5 shared
Mamakhel, Aref
3 / 21 shared
Tabanelli, Tommaso
3 / 3 shared
Shen, Yanbin
3 / 5 shared
Villa, Alberto
4 / 20 shared
Iversen, Bo B.
2 / 31 shared
Botton, Gianlugi A.
1 / 1 shared
Lolli, Alice
1 / 1 shared
Chinchilla, Lidia E.
1 / 4 shared
Cavani, Fabrizio
1 / 2 shared
Veith, Gabriel M.
1 / 5 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Hutchings, Graham J.
  • Cattaneo, Stefano
  • Albonetti, Stefania
  • Kiely, Christopher J.
  • Dimitratos, Nikolaos
  • Bere, Takudzwa
  • Hutchings, Graham
  • Liu, Xi
  • Su, Ren
  • Prati, Laura
  • Niemantsverdriet, J. W. Hans
  • Li, Yongwang
  • Hansen, Thomas W.
  • Mamakhel, Aref
  • Tabanelli, Tommaso
  • Shen, Yanbin
  • Villa, Alberto
  • Iversen, Bo B.
  • Botton, Gianlugi A.
  • Lolli, Alice
  • Chinchilla, Lidia E.
  • Cavani, Fabrizio
  • Veith, Gabriel M.
OrganizationsLocationPeople

article

Promotion mechanisms of Au supported on TiO2 in thermal- and photocatalytic glycerol conversion

  • Hutchings, Graham
  • Liu, Xi
  • Su, Ren
  • Iversen, Bo B.
  • Prati, Laura
  • Niemantsverdriet, J. W. Hans
  • Li, Yongwang
  • Hansen, Thomas W.
  • Mamakhel, Aref
  • Tabanelli, Tommaso
  • Shen, Yanbin
  • Villa, Alberto
  • Dimitratos, Nikolaos
  • Bonincontro, Danilo
Abstract

Catalytic glycerol conversion by means of either photon or thermal energy is of great importance and can be realized by metal supported on TiO2 systems. Although various procedures have been employed to synthesize efficient metal/TiO2 catalysts, the promotional mechanisms for both reactions are still unclear due to the lack of well-defined systems. Here, we have deposited gold nanoparticles on a series of highly crystalline anatase TiO2 substrates with different crystallite sizes (7, 12, 16, 28 nm) by both direct precipitation and sol-immobilization methods to examine the effect of metal deposition methods and TiO2 sizes on both photo- and thermal catalytic glycerol reforming. For photocatalytic H2 evolution from glycerol, optimum performance was observed for the Au supported on 12 nm TiO2 for both deposition methods. For thermal catalytic glycerol oxidation, all catalysts show a similar selectivity to glycerate (>70%) regardless of the TiO2 size and metal deposition method; however, the metal deposition method significantly influences the catalytic activity. In situ UV–vis spectrometry reveals that the optimized photocatalytic performance originates from enhanced charge transfer kinetics and a more negative Fermi level for proton reduction, whereas electrochemical analysis reveals that the promoted glycerol oxidation is caused by the enhanced oxygen reduction half-reaction.

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • Oxygen
  • gold
  • Hydrogen
  • precipitation
  • spectrometry
  • electrochemical characterization method