People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Villa, Alberto
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Metal-Free Catalytic Conversion of Veratryl and Benzyl Alcohols through Nitrogen-Enriched Carbon Nanotubescitations
- 2022Base‐free oxidative esterification of HMF over AuPd/nNiO‐TiO2 : When alloying effects and metal‐support interactions converge in producing effective and stable catalysts [Base-free Oxidative Esterification of HMF over AuPd/nNiO-TiO2. When Alloying Effects and Metal-support Interactions Converge in Producing Effective and Stable Catalysts]citations
- 2021Disclosing the role of gold on palladium - gold alloyed supported catalysts in formic acid decompositioncitations
- 2021Synthesis of palladium-rhodium bimetallic nanoparticles for formic acid dehydrogenationcitations
- 2020Capping agent effect on Pd-supported nanoparticles in the hydrogenation of furfuralcitations
- 2020DFT-assisted spectroscopic studies on the coordination of small ligands to palladium: from isolated ions to nanoparticlescitations
- 2019Promotion Mechanisms of Au Supported on TiO2 in Thermal- And Photocatalytic Glycerol Conversioncitations
- 2019Cyclic Voltammetry Characterization of Au, Pd, and AuPd Nanoparticles Supported on Different Carbon Nanofiberscitations
- 2019Hybrid Au/CuO Nanoparticles: Effect of Structural Features for Selective Benzyl Alcohol Oxidationcitations
- 2019Promotion Mechanisms of Au Supported on TiO 2 in Thermal- And Photocatalytic Glycerol Conversioncitations
- 2019AuPd-nNiO as an effective catalyst for the base-free oxidation of HMF under mild reaction conditionscitations
- 2019Voltammetric characterization of gold-based bimetallic (AuPt; AuPd; AuAg) nanoparticles
- 2019Promotion mechanisms of Au supported on TiO2 in thermal- and photocatalytic glycerol conversioncitations
- 2018Selective Oxidation of Veratryl Alcohol over Au-Pd/Ce0.62Zr0.38O2 Catalysts Synthesized by Sol-Immobilization: Effect of Au:Pd Molar Ratiocitations
- 2018Catalytic Performances of Au–Pt Nanoparticles on Phosphorous Functionalized Carbon Nanofibers towards HMF Oxidationcitations
- 2018Controlling the incorporation of phosphorus functionalities on carbon nanofibers: effects on the catalytic performance of fructose dehydrationcitations
- 2017Metal nanoclusters stabilized by pH-responsive microgels: Preparation and evaluation of their catalytic potentialcitations
- 2017Metal nanoclusters stabilized by pH-responsive microgels: Preparation and evaluation of their catalytic potentialcitations
- 2016Characterisation of gold catalystscitations
- 2010Pd on carbon nanotubes for liquid phase alcohol oxidationcitations
Places of action
Organizations | Location | People |
---|
article
Promotion mechanisms of Au supported on TiO2 in thermal- and photocatalytic glycerol conversion
Abstract
Catalytic glycerol conversion by means of either photon or thermal energy is of great importance and can be realized by metal supported on TiO2 systems. Although various procedures have been employed to synthesize efficient metal/TiO2 catalysts, the promotional mechanisms for both reactions are still unclear due to the lack of well-defined systems. Here, we have deposited gold nanoparticles on a series of highly crystalline anatase TiO2 substrates with different crystallite sizes (7, 12, 16, 28 nm) by both direct precipitation and sol-immobilization methods to examine the effect of metal deposition methods and TiO2 sizes on both photo- and thermal catalytic glycerol reforming. For photocatalytic H2 evolution from glycerol, optimum performance was observed for the Au supported on 12 nm TiO2 for both deposition methods. For thermal catalytic glycerol oxidation, all catalysts show a similar selectivity to glycerate (>70%) regardless of the TiO2 size and metal deposition method; however, the metal deposition method significantly influences the catalytic activity. In situ UV–vis spectrometry reveals that the optimized photocatalytic performance originates from enhanced charge transfer kinetics and a more negative Fermi level for proton reduction, whereas electrochemical analysis reveals that the promoted glycerol oxidation is caused by the enhanced oxygen reduction half-reaction.