People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Anna, Fontcuberta I. Morral
École Polytechnique Fédérale de Lausanne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Understanding the growth mechanism of BaZrS 3 chalcogenide perovskite thin films from sulfurized oxide precursorscitations
- 2023Understanding the growth mechanism of BaZrS<sub>3</sub> chalcogenide perovskite thin films from sulfurized oxide precursorscitations
- 2023The 2022 applied physics by pioneering women: a roadmapcitations
- 2022Nanoscale Growth Initiation as a Pathway to Improve the Earth-Abundant Absorber Zinc Phosphidecitations
- 2022Showcasing the optical properties of monocrystalline zinc phosphide thin films as an earth-abundant photovoltaic absorbercitations
- 2022Fabrication of Single-Crystalline InSb-on-Insulator by Rapid Melt Growthcitations
- 2022The Advantage of Nanowire Configuration in Band Structure Determinationcitations
- 2021The path towards 1 µm monocrystalline Zn<sub>3</sub>P<sub>2</sub> films on InP: substrate preparation, growth conditions and luminescence propertiescitations
- 2020Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisation.
- 2020Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisationcitations
- 2019Highly sensitive piezotronic pressure sensors based on undoped GaAs nanowire ensemblescitations
- 2019Unveiling Temperature-Dependent Scattering Mechanisms in Semiconductor Nanowires Using Optical-Pump Terahertz-Probe Spectroscopycitations
- 2018Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>NH<sub>3</sub>)<sub>2</sub>Pb<sub>3</sub>Br<sub>10</sub> thin filmscitations
- 2018High Electron Mobility and Insights into Temperature-Dependent Scattering Mechanisms in InAsSb Nanowirescitations
- 2018Metallized Boron-Doped Black Silicon Emitters For Front Contact Solar Cellscitations
- 2017Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowirescitations
- 2014Gold-free ternary III-V antimonide nanowire arrays on silicon: twin-free down to the first bilayercitations
- 2014Gold-free ternary III-V antimonide nanowire arrays on silicon : twin-free down to the first bilayercitations
Places of action
Organizations | Location | People |
---|
article
Gold-free ternary III-V antimonide nanowire arrays on silicon: twin-free down to the first bilayer
Abstract
With the continued maturation of III–V nanowire research, expectations of material quality should be concomitantly raised. Ideally, III–V nanowires integrated on silicon should be entirely free of extended planar defects such as twins, stacking faults, or polytypism, position-controlled for convenient device processing, and gold-free for compatibility with standard complementary metal–oxide–semiconductor (CMOS) processing tools. Here we demonstrate large area vertical GaAsxSb1–x nanowire arrays grown on silicon (111) by molecular beam epitaxy. The nanowires’ complex faceting, pure zinc blende crystal structure, and composition are mapped using characterization techniques both at the nanoscale and in large-area ensembles. We prove unambiguously that these gold-free nanowires are entirely twin-free down to the first bilayer and reveal their three-dimensional composition evolution, paving the way for novel infrared devices integrated directly on the cost-effective Si platform.