Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cumbunga, Judice

  • Google
  • 3
  • 3
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Modeling and optimization of the thermomechanical behavior of metal partsobtained by sintering : Numerical and experimental approach. ; Modélisation et optimisation du comportement thermomécanique des pièces métalliques obtenues par frittage : Approche numérique et expérimentale.citations
  • 2023Numerical modeling of the solid-state sintering at the microstructural level: Multiphysics approach and application to metal additive manufacturingcitations
  • 2023Numerical Modeling and Simulation of Microstructure Evolution during Solid-State Sintering: Multiphysics Approach1citations

Places of action

Chart of shared publication
Chamoret, Dominique
2 / 3 shared
Abboudi, Said
2 / 2 shared
Gomes, Samuel
1 / 3 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Chamoret, Dominique
  • Abboudi, Said
  • Gomes, Samuel
OrganizationsLocationPeople

thesis

Modeling and optimization of the thermomechanical behavior of metal partsobtained by sintering : Numerical and experimental approach. ; Modélisation et optimisation du comportement thermomécanique des pièces métalliques obtenues par frittage : Approche numérique et expérimentale.

  • Cumbunga, Judice
Abstract

The pressureless solid-state sintering process is a thermal treatment applied to improve or adjust material properties according to its field of application, given its ability to handle parts with complex geometries, high dimensional accuracy, small dimensions and suitability for soft and hard materials. However, modeling this type of process proves to be a difficult task, as an appropriate model needs to take into account various aspects, namely the multi-scale and multi-physics character of the problem, the high non-linearity of the material, the complexity of the geometries and, last but not least, the type of boundary conditions. From an industrial point of view, the appropriate heat treatment parameters are mainly obtained by trial and error. Numerical simulation makes it possible to reduce the cost of these tests and to provide more useful predictions or recommendations for actual production, than sintering tests themselves. Numerous research projects have been devoted to the development of mathematical and numerical models with approaches adapted to different levels or scales, such as the small scale (atomic level), the meso-scale (particle, grain and pore level), and the continuum scale (component level). The ability to predict the evolution of microstructure has put the mesoscopic model (at particle, grain and pore level) ahead of the others.In research terms, the question posed would therefore be "Given a untreated part obtained by MExAM, how can we numerically simulate the evolution of the microstructure (from an initial microstructural state) to control changes in thermomechanical properties during the solid-state sintering process ?"A robust computational model, based on a multiphysics and multi-scale approach, has been developed, tested and validated. It enables us to predict the evolution of the material's microstructure, thermal and mechanical properties. The model is based on the finite element method, and progressively takes into account the multiphysical couplings (thermal, mechanical and ...

Topics
  • impedance spectroscopy
  • pore
  • grain
  • simulation
  • extrusion
  • laser emission spectroscopy
  • steel
  • additive manufacturing
  • small-angle neutron scattering
  • sintering
  • secondary electron spectroscopy