Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shin, Jungho

  • Google
  • 2
  • 5
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Origins of strengthening and failure in twinned Au nanowires: Insights from in−situ experiments and atomistic simulations16citations
  • 2019Etude expérimentale du comportement mécanique et de la nucléation des dislocations dans des nanofils contenant très peu de défauts ; Experimental investigation of dislocation nucleation and deformation behavior in defect-scarce nanowirescitations

Places of action

Chart of shared publication
Prakash, Aruna
1 / 5 shared
Gianola, Daniel S.
1 / 4 shared
Xie, Zhuocheng
1 / 11 shared
Bitzek, Erik
1 / 69 shared
Renner, Jakob
1 / 7 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Prakash, Aruna
  • Gianola, Daniel S.
  • Xie, Zhuocheng
  • Bitzek, Erik
  • Renner, Jakob
OrganizationsLocationPeople

thesis

Etude expérimentale du comportement mécanique et de la nucléation des dislocations dans des nanofils contenant très peu de défauts ; Experimental investigation of dislocation nucleation and deformation behavior in defect-scarce nanowires

  • Shin, Jungho
Abstract

Augmenter la résistance mécanique des matériaux requiert une compréhension des mécanismes fondamentaux lors des premiers stades de la plasticité. Les métaux de structure comme l’acier ont des limites élastiques environ 1000 fois plus faibles que la cission critique théorique à cause du glissement des dislocations préexistantes dans le matériau. L’élimination de ces défauts permet d’atteindre la cission critique et il faut alors nucléer de nouvelles dislocations pour que la déformation plastique continue. L’observation expérimentale du déclenchement de la nucléation constitue un véritable défi. Dans cette thèse des nanofils métalliques sans défauts ont été déformés en tension afin d’étudier les mécanismes de défaillance d’un cristal parfait. Un moyen d’ajuster la résistance mécanique dans le régime de résistance théorique est présenté sur la base de ces résultats. Cette stratégie ouvre de nouvelles perspectives pour utiliser des matériaux ayant des performances mécaniques supérieures ; Tailoring material strength to higher level requires understanding of the governing mechanism, how the onset of plasticity is controlled. Conventional engineering metals including steel yield at stress of 1000 times lower than their predicted theoretical strength due to the gliding of pre-existing dislocations. On the other hand, theoretical strength can be reached by eliminating these defects, which now requires to nucleate new dislocation to deform plastically. However, deformation mechanism of this new class of materials has not been fully addressed. Therefore, it is highly demanding to experimentally elucidate how the dislocation nucleation is triggered. In this thesis, pristine metallic nanowires were deformed in tension to gain physical insights on how a perfect crystal fails. A successful way of tuning mechanical strength in the theoretical strength regime is presented based on the findings. This strategy paves new avenue for utilizing material that exhibit superior mechanical performance.

Topics
  • impedance spectroscopy
  • laser emission spectroscopy
  • strength
  • steel
  • dislocation
  • plasticity
  • deformation mechanism
  • small-angle neutron scattering