People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mortazavi, Bohayra
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023First Theoretical Realization of a Stable Two-Dimensional Boron Fullerene Network
- 2023A Theoretical Investigation of the Structural, Electronic and Mechanical Properties of Pristine and Nitrogen-Terminated Carbon Nanoribbons Composed of 4–5–6–8-Membered Rings
- 2021Molecular Dynamics Modeling of Mechanical Properties of Polymer Nanocomposites Reinforced by C7N6 Nanosheetcitations
- 2021Molecular junctions enhancing thermal transport within graphene polymer nanocomposite: A molecular dynamics studycitations
- 2021A Multiscale Investigation on the Thermal Transport in Polydimethylsiloxane Nanocomposites: Graphene vs. Borophenecitations
- 2021A Multiscale Investigation on the Thermal Transport in Polydimethylsiloxane Nanocomposites: Graphene vs. Borophene
- 2019Enhancement in hydrogen storage capacities of light metal functionalized Boron–Graphdiyne nanosheetscitations
- 2019Aromatic molecular junctions between graphene sheets: a molecular dynamics screening for enhanced thermal conductancecitations
- 2019Two-Dimensional SiP, SiAs, GeP and GeAs as Promising Candidates for Photocatalytic Applicationscitations
- 2019Thermal bridging of graphene nanosheets via covalent molecular junctionscitations
- 2019Theoretical realization of two-dimensional M 3 (C 6 X 6 ) 2 (M = Co, Cr, Cu, Fe, Mn, Ni, Pd, Rh and X = O, S, Se) metal–organic frameworkscitations
- 2018First-principles investigation of Ag-, Co-, Cr-, Cu-, Fe-, Mn-, Ni-, Pd- and Rh-hexaaminobenzene 2D metal-organic frameworkscitations
- 2017Metamorphosis in carbon network: From penta-graphene to biphenylene under uniaxial tensioncitations
- 2017Thermal transport in polycrystalline MoS2
- 2017Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: A multiscale investigationcitations
- 2017First-principles investigation of mechanical properties of silicene, germanene and stanenecitations
- 2017A structural insight into mechanical strength of graphene-like carbon and carbon nitride networkscitations
- 2016Thermal conductivity of MoS2 polycrystalline nanomembranes
- 2016Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle studycitations
- 2016Mechanical responses of borophene sheets: a first-principles studycitations
- 2016Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigationcitations
- 2015Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics studycitations
- 2014Mechanical properties of polycrystalline boron-nitride nanosheetscitations
- 2014Annealing effect on the thermal conductivity of thermoelectric ZnTe nanowirescitations
- 2014Multiscale modeling of thermal conductivity of polycrystalline graphene sheetscitations
- 2014Atomistic modeling of mechanical properties of polycrystalline graphenecitations
- 2013Multiscale modeling of thermal and mechanical properties of nanostructured materials and polymer nanocomposites ; Modélisation multi-échelles des propriétés thermiques et mécaniques des matériaux nanostructurés et des polymères nanocomposites.
Places of action
Organizations | Location | People |
---|
thesis
Multiscale modeling of thermal and mechanical properties of nanostructured materials and polymer nanocomposites ; Modélisation multi-échelles des propriétés thermiques et mécaniques des matériaux nanostructurés et des polymères nanocomposites.
Abstract
Les matériaux nanostructurés suscitent un intérêt qui va croissant en raison de leurs propriétés chimiques et physiquesexceptionnelles. A cause de la complexité et du coût des développements expérimentaux à l’échelle nano, la simulationnumérique devient une alternative de plus en plus populaire aux études expérimentales. Dans ce travail de thèse, nous avons essayé de combiner des simulations à l’échelle atomique avec de la modélisation en milieu continu pour évaluer la conductivité thermique et la réponse élastique de matériaux nanostructurés. Nous avons utilisé des simulations de dynamique moléculaire pour calculer la réponse mécanique et thermique des matériaux sur des volumes à l’échelle nano. Des méthodes de micromécanique et la méthode des éléments finis, qui utilisent la mécanique des milieux continus, ont permis d’évaluer les propriétés mécaniques des matériaux à l'échelle macroscopique. Les résultats obtenus par ces simulations numériques ont été ensuite comparés avec ceux issus de l’expérience. ; Nanostructured materials are gaining an ongoing demand because of their exceptional chemical and physical properties. Due to complexities and costs of experimental studies at nanoscale, computer simulations are getting more attractive asexperimental alternatives. In this PhD work, we tried to use combination of atomistic simulations and continuum modeling for the evaluation of thermal conductivity and elastic stiffness of nanostructured materials. We used molecular dynamics simulations to probe and investigate the thermal and mechanical response of materials at nanoscale. The finite element and micromechanics methods that are on the basis of continuum mechanics theories were used to evaluate the bulk properties of materials. The predicted properties are then compared with existing experimental results.