Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Artsiukh, Evgenij

  • Google
  • 1
  • 1
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Evaluation of crystallographic ordering degree of magnetically active ions in Sr2FeMoO6-δ by means of the (101) X-ray peak intensitycitations

Places of action

Chart of shared publication
Suchaneck, Gunnar
1 / 4 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Suchaneck, Gunnar
OrganizationsLocationPeople

article

Evaluation of crystallographic ordering degree of magnetically active ions in Sr2FeMoO6-δ by means of the (101) X-ray peak intensity

  • Artsiukh, Evgenij
  • Suchaneck, Gunnar
Abstract

Strontium ferromolybdate double perovskite is a promising candidate for room-temperature spintronic applications. Nevertheless, SFMO has not yet found wide application in spintronics. This is attributed to the low reproducibility of its magnetic properties which partially originates from their strong dependence on the ordering degree of Fe and Mo ions in the Bʹ and Bʺ sublattices of double perovskite A2BʹBʺO6. In this work, we have considered an express method of determining the degree of disorder in strontium ferromolybdate. The sublattice occupation with Fe and Mo ions has been estimated for stoichiometric and nonstoichiometric Sr2FeMoO6-δ with a 5% Fe and Mo excess, respectively. We have calculated the intensity ratio between the superstructure (101) XRD peak and the most intense (112 + 200) peak. The calculated curves have been fitted to an analytical expression of a similar case known from literature. The calculation results obtained using the proposed method are within a ± 25 % agreement with Rietveld analysis of experimental data. Thus, this method can be used as an alternative to Rietveld analysis if the exposure time during X-ray diffraction experiment was insufficient. We have discussed the dependence of the I (101)/I (112 + 200) peak intensity ratio on various factors including instrumental broadening of diffraction peaks, peak twinning due to grain size reduction, thin film lattice parameter variation due to substrate lattice mismatch and lattice parameter variation due to oxygen vacancies. The relevance of the method is the evaluation of the degree of superstructure ordering in Sr2FeMoO6-δ without large time consumption for X-ray diffraction pattern recording and Rietveld data processing which may be essential when dealing with large amounts of experimental data.

Topics
  • perovskite
  • impedance spectroscopy
  • grain
  • grain size
  • x-ray diffraction
  • experiment
  • thin film
  • Oxygen
  • Strontium