People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bublik, Vladimir T.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2019Structure formation by hot extrusion of thermoelectric bismuth chalcogenide solid solution rods
- 2019Structure formation by hot extrusion of thermoelectric bismuth chalcogenide solid solution rods
- 2019Regularities of microdefect formation in silicon during heat treatment for internal getter synthesis
- 2019Effect of proton doping and heat treatment on the structure of single crystal silicon
- 2018Capabilities of X-ray diffuse scattering method for study of microdefects in semiconductor crystals
Places of action
Organizations | Location | People |
---|
article
Capabilities of X-ray diffuse scattering method for study of microdefects in semiconductor crystals
Abstract
The capabilities of X-ray diffuse scattering (XRDS) method for the study of microdefects in semiconductor crystals have been overviewed. Analysis of the results has shown that the XRDS method is a highly sensitive and information valuable tool for studying early stages of solid solution decomposition in semiconductors. A review of the results relating to the methodological aspect has shown that the most consistent approach is a combination of XRDS with precision lattice parameter measurements. It allows one to detect decomposition stages that cannot be visualized using transmission electron microscopy (TEM) and moreover to draw conclusions as to microdefect formation mechanisms. TEM-invisible defects that are coherent with the matrix and have smeared boundaries with low displacement field gradients may form due to transmutation doping as a result of neutron irradiation and relaxation of disordered regions accompanied by redistribution of point defects and annihilation of interstitial defects and vacancies. For GaP and InP examples, a structural microdefect formation mechanism has been revealed associated with the interaction of defects forming during the decomposition and residual intrinsic defects. Analysis of XRDS intensity distribution around the reciprocal lattice site and the related evolution of lattice constant allows detecting different decomposition stages: first, the formation of a solution of Frenkel pairs in which concentration fluctuations develop, then the formation of matrix-coherent microdefects and finally coherency violation and the formation of defects with sharp boundaries. Fundamentally, the latter defects can be precipitating particles. Study of the evolution of diffuse scattering iso-intensity curves in GaP, GaAs(Si) and Si(O) has allowed tracing the evolution of microdefects from matrix-coherent ones to microdefects with smeared coherency resulting from microdefect growth during the decomposition of non-stoichiometric solid solutions heavily supersaturated with intrinsic (or impurity) ...