People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bílek, Vlastimil
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Effect of siliceous sand volume fraction on the properties of alkali-activated slag mortars
- 2022Influence of activator type and slag volume fraction on properties of alkali-activated slag pastescitations
- 2021Mechanical Fracture and Fatigue Characteristics of Fine-Grained Composite Based on Sodium Hydroxide-Activated Slag Cured under High Relative Humiditycitations
- 2021Blastfurnace Hybrid Cement with Waste Water Glass Activator: Alkali-Silica Reaction Studycitations
- 2020Cement Kiln By-Pass Dust: An Effective Alkaline Activator for Pozzolanic Materialscitations
- 2018Fracture properties of concrete specimens made from alkali activated binders.citations
Places of action
Organizations | Location | People |
---|
article
Cement Kiln By-Pass Dust: An Effective Alkaline Activator for Pozzolanic Materials
Abstract
Cement kiln by-pass dust (CKD) is a fine-grained by-product of Portland clinker manufacturing. Its chemical composition is not suitable for returning back into feedstock and, therefore, it has to be discharged. Such an increasing waste production contributes to the high environmental impact of the cement industry. A possible solution for the ecological processing of CKD is its incorporation into alkali-activated blast furnace slag binders. Thanks to high alkaline content, CKD serves as an effective accelerator for latent hydraulic substances which positively affect their mechanical properties. It was found out that CKD in combination with sodium carbonate creates sodium hydroxide in situ which together with sodium water glass content increases the dissolution of blast furnace slag particles and subsequently binder phase formation resulting in better flexural and compressive strength development compared to the sample without it. At the same time, the addition of CKD compensates the autogenous shrinkage of alkali-activated materials reducing the risk of material cracking. On the other hand, this type of inorganic admixture accelerates the hydration process causing rapid loss of workability.