People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Šimonová, Hana
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Hybrid Geopolymer Composites Based on Fly Ash Reinforced with Glass and Flax Fibers
- 2021Mechanical Fracture and Fatigue Characteristics of Fine-Grained Composite Based on Sodium Hydroxide-Activated Slag Cured under High Relative Humiditycitations
- 2021Deflection of an eccentric crack under mixed-mode conditions in an SCB specimencitations
- 2021Strength characteristics of concrete exposed to the elevated temperatures according to the temperature-time curve ISO 834citations
- 2021Influence of rock inclusion composition on the fracture response of cement-based composite specimenscitations
- 2021Advanced Evaluation of the Freeze–Thaw Damage of Concrete Based on the Fracture Testscitations
- 2021Fracture parameters of fly ash geopolymer mortars with carbon black and graphite filler
- 2021Numerical analysis of a semi-circular disc with an angled crack loaded in mixed-mode
- 2020Modelling of interfacial transition zone effect on resistance to crack propagation in fine-grained cement-based compositescitations
- 2020Mechanical Fracture and Fatigue Characteristics of Fine-Grained Composite Based on Sodium Hydroxide-Activated Slag Cured under High Relative Humiditycitations
- 2020Multi-parameter fracture mechanics: crack path in a mixed-mode specimencitations
- 2020Components of the Fracture Response of Alkali-Activated Slag Composites with Steel Microfiberscitations
- 2018Fracture properties of concrete specimens made from alkali activated binders.citations
Places of action
Organizations | Location | People |
---|
article
Modelling of interfacial transition zone effect on resistance to crack propagation in fine-grained cement-based composites
Abstract
In this paper, the attention is paid to investigation of the importance of the interfacial transition zone (ITZ) in selected fine-grained cement-based composites for the global fracture behaviour. This is a region of cement paste around the aggregate particles which specific features could have significant impact on the final behaviour of cement composites with a crack tip nearby this interface under applied tension. The aim of this work is to show the basic interface microstructure by scanning electron microscopy (SEM) done by MIRA3 TESCAN and to analyse the behaviour of such composite by numerical modelling. Numerical studies assume two different ITZ thicknesses taken from SEM analysis. A simplified cracked geometry (consisting of three phases – matrix, ITZ, and aggregate) is modelled by means of the finite element method with a crack terminating at the matrix–ITZ interface. ITZ’s modulus of elasticity is taken from generalized self-consistent scheme. A few conclusions are discussed based on comparison of the average values of the opening stress ahead of the crack tip with their critical values. The analyses dealing with the effect of ITZ’s properties on the stress distribution should contribute to better description of toughening mechanisms in silicate-based composites.