People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kolomý, Štěpán
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Study of dynamic behaviour via Taylor anvil test and structure observation of M300 maraging steel fabricated by the selective laser melting methodcitations
- 2024Machinability of extruded H13 tool steel: Effect of cutting parameters on cutting forces, surface roughness, microstructure, and residual stressescitations
- 2024Effect of high-speed steel screw drill geometry on cutting performance when machining austenitic stainless steelcitations
- 2024The effect of strain rate and anisotropy on the formability and mechanical behaviour of aluminium alloy 2024-T3citations
- 2024The effect of strain rate and anisotropy on the formability and mechanical behaviour of aluminium alloy 2024-T3citations
- 2023Influence of Aging Temperature on Mechanical Properties and Structure of M300 Maraging Steel Produced by Selective Laser Meltingcitations
- 2023High Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swagingcitations
- 2021ON THE EFFECTIVE SUBSTITUTION OF TURNING BY PERIPHERAL MILLING
Places of action
Organizations | Location | People |
---|
article
Machinability of extruded H13 tool steel: Effect of cutting parameters on cutting forces, surface roughness, microstructure, and residual stresses
Abstract
The production of H13 tool steel (TS) by material extrusion (MEX) is a promising method in various applications, but as-built surface roughness does not comply with the quality requirements. Hence, this study investigated the effects of cutting parameters on tool wear, cutting forces, surface quality, microhardness, structure, and residual stresses when machining H13 TS produced by MEX. Dry machining (DM) proved advantageous in certain indicators such as tool wear and cutting forces in comparison to the flood cooling (FC). The lowest surface roughness (0.08 mu m) was achieved at the cutting speed of 80 m/min, feed per tooth of 0.005 mm, and FC which corresponded to a 41 % decrease compared to DM under same conditions. Surface microhardness increased by 20 % after machining, decreasing with distance from the surface. The highest compressive residual stresses were observed under FC, while the DM resulted in a 78.2 % decrease in residual stresses due to a partial annealing effect caused by higher surface temperature. Overall, DM exhibited great potential for achieving high-quality surfaces with a favorable structure and residual stresses. This study s novelty and robustness lie in its significant contribution to practical industrial applications, such as mold and core production.