Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mozalev, Alexander

  • Google
  • 9
  • 19
  • 66

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Porous-anodic-alumina-templated Ta-Nb-alloy oxide coatings via the magnetron-sputtering anodizing as novel 3D nanostructured electrodes for energy-storage applications5citations
  • 2024XPS characterization of metal-oxide nanocolumn arrays via anodizing Al/Nb/Mo metal layerscitations
  • 2023Se-doped Nb2O5-Al2O3 composite-ceramic nanoarrays via the anodizing of Al/Nb bilayer in selenic acid6citations
  • 2021Metal-substrate-supported tungsten-oxide nanoarrays via porous-alumina-assisted anodization: from nanocolumns to nanocapsules and nanotubes ; Nanouspořádané pole oxidů wolframu na kovovém substrátu vyrobené pomocí anodizace přes porézní aluminu: od nanosloupků po nanokaplsa a nanotrubky38citations
  • 2021Anodic formation and SEM characterization of zirconium oxide nanostructured filmscitations
  • 2021Dielectric properties of nanostructured mixed-oxide films formed by anodizing Al/Zr bilayerscitations
  • 2021The Growth, Composition, and Functional Properties of Self‐Organized Nanostructured ZrO2‐Al2O3 Anodic Films for Advanced Dielectric Applications7citations
  • 2018Resistive switching in TiO2 nanocolumn arrays electrochemically grown2citations
  • 2018Porous‐Alumina‐Assisted Growth of Nanostructured Anodic Films on Ti−Nb Alloys8citations

Places of action

Chart of shared publication
Gispert-Guirado, Francesc
2 / 2 shared
Llobet, Eduard
3 / 14 shared
Bendová, Mária
5 / 5 shared
Habazaki, Hiroki
1 / 5 shared
Prášek, Jan
3 / 4 shared
Kejík, Lukáš
1 / 1 shared
Guell, Frank
1 / 1 shared
Pytlíček, Zdeněk
2 / 3 shared
Kamnev, Kirill
4 / 4 shared
Sepúlveda Sepúlveda, Lina Marcela
1 / 1 shared
Kolibalova, Eva
1 / 2 shared
Prasek, Jan
1 / 1 shared
Michalicka, Jan
1 / 9 shared
Bendova, Maria
2 / 3 shared
Sepúlveda, Marcela
1 / 2 shared
Hubálek, Jaromír
1 / 4 shared
Márik, Marian
1 / 1 shared
Kolar, Jakub
1 / 1 shared
Gispert Guirado, Francesc
1 / 1 shared
Chart of publication period
2024
2023
2021
2018

Co-Authors (by relevance)

  • Gispert-Guirado, Francesc
  • Llobet, Eduard
  • Bendová, Mária
  • Habazaki, Hiroki
  • Prášek, Jan
  • Kejík, Lukáš
  • Guell, Frank
  • Pytlíček, Zdeněk
  • Kamnev, Kirill
  • Sepúlveda Sepúlveda, Lina Marcela
  • Kolibalova, Eva
  • Prasek, Jan
  • Michalicka, Jan
  • Bendova, Maria
  • Sepúlveda, Marcela
  • Hubálek, Jaromír
  • Márik, Marian
  • Kolar, Jakub
  • Gispert Guirado, Francesc
OrganizationsLocationPeople

conferencepaper

XPS characterization of metal-oxide nanocolumn arrays via anodizing Al/Nb/Mo metal layers

  • Prášek, Jan
  • Bendová, Mária
  • Mozalev, Alexander
Abstract

Molybdenum oxides exhibit numerous electronic properties thanks to the ability of Mo to possess various oxidation states and coordinations. Molybdenum oxides are thus attractive for applications in energy storage, conversion, electrochromic, gas sensing, or superconducting devices. The nanostructuring of molybdenum oxides, controlled through the preparation conditions, is advantageous for enhancing the material's properties. The so-called porous-anodic-alumina (PAA)-assisted anodizing, based on the anodic oxidation of a metal layer through a PAA overlayer, may also be a way to grow molybdenum-oxide nanocolumn arrays if their stability in water-containing electrolytes can be secured. To take on the challenge, we envisioned mixing MoOx with the oxide of a different metal (Nb), by placing a thin interlayer of Nb between the Al and Mo in the precursor thin-film stack. The arrays were prepared from the magnetron-sputtered Al/Nb/Mo trilayers by anodizing at 46 V, then re-anodizing to 180 V, followed by selective dissolution of the PAA overlayer. Detailed XPS characterization confirmed that various Mo species were present in the column material, with a total amount of Mo reaching 16 at.% (Mo+Nb = 100%). The fitting of the narrow-scan Nb 3d and Mo 3d spectra showed that Mo6+, Mo5+, and Mo4+, in various ratios, were present at the column surface material, whereas Nb2O5 was almost entirely stoichiometric. Further investigation is underway to understand the formation-structure-morphology relationship and explore the functional properties of the novel nanoarrays.

Topics
  • porous
  • impedance spectroscopy
  • surface
  • molybdenum
  • x-ray photoelectron spectroscopy
  • niobium