People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Knápek, Alexandr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Analysis of processing efficiency, surface, and bulk chemistry, and nanomechanical properties of the Monel<sup>®</sup> alloy 400 after ultrashort pulsed laser ablationcitations
- 2024Comprehensive analysis of charge carriers dynamics through the honeycomb structure of graphite thin films and polymer graphite with applications in cold field emission and scanning tunneling microscopycitations
- 2024Analysis of processing efficiency, surface, and bulk chemistry, and nanomechanical properties of the Monel® alloy 400 after ultrashort pulsed laser ablationcitations
- 2024Field Ion Microscopy of Tungsten Nano-Tips Coated with Thin Layer of the EpoxyResin
- 2023Electrical characteristics of different concentration of silica nanoparticles embedded in epoxy resincitations
- 2021PVDF Fibers Modification by Nitrate Salts Dopingcitations
- 2021Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubescitations
- 2021Testing the performance of Murphy-Good plots when applied to current-voltage characteristics of Si field electron emission tipscitations
- 2021Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakescitations
- 2021Field emission properties of polymer graphite tips prepared by membrane electrochemical etchingcitations
- 2019Metody přípravy a charakterizace experimentálních autoemisních katod ; Methods of Preparation and Characterization of Experimental Field-Emission Cathodes
Places of action
Organizations | Location | People |
---|
document
Field Ion Microscopy of Tungsten Nano-Tips Coated with Thin Layer of the EpoxyResin
Abstract
This paper reports results of analysis of field ion emission mechanism from tungstenepoxy composite emitters that are compared to tungsten nanofield emitters. In this context, the mechanism of emission from this type of emitters is described based on a theory of induced conductive channels. The tungsten emitters were prepared using the electrochemical polishing technique and coated with a layer of the epoxy resin. Field ion microscope (FIM) analyses are reported including the study of the emissionion density distributions from both the uncoated and coated emitters. Two forms of emission patterns have been observed in the ion emission microscopy technique describing the differences in the emission mechanism of both types of emitters. The observed results show: (a) the expected crystalline surface atomic distribution images of the field ion microscopy in the case of uncoated tungsten tips, and (b) randomly distributed emission spots that describe the locations of the induced conductive channels inside the resin coating layer.