People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Papšík, Roman
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Prediction of ring crack initiation in ceramics and glasses using a stress-energy fracture criterioncitations
- 2024Prediction of thermal shock induced cracking in multi-material ceramics using a stress-energy criterioncitations
- 2021Additive manufacturing of high-strength alumina through a multi-material approachcitations
Places of action
Organizations | Location | People |
---|
article
Prediction of thermal shock induced cracking in multi-material ceramics using a stress-energy criterion
Abstract
Impact of residual stresses on the thermal shock resistance of alumina–zirconia multi-layer ceramics is investigated within the framework of finite fracture mechanics, using a stress-energy criterion. The critical temperature difference (Tc) for crack formation is strongly dependent on the magnitude of residual stress and the material’s strength. The predicted minimal spacing between cracks, critical time for crack initiation, and initial depth of the induced cracks are compared and discussed for different designs. An increase of up to 40 % in Tc is predicted for multi-material ceramics with a thin alumina surface layer with compressive stresses, compared to bulk reference alumina.