People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kolomý, Štěpán
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Study of dynamic behaviour via Taylor anvil test and structure observation of M300 maraging steel fabricated by the selective laser melting methodcitations
- 2024Machinability of extruded H13 tool steel: Effect of cutting parameters on cutting forces, surface roughness, microstructure, and residual stressescitations
- 2024Effect of high-speed steel screw drill geometry on cutting performance when machining austenitic stainless steelcitations
- 2024The effect of strain rate and anisotropy on the formability and mechanical behaviour of aluminium alloy 2024-T3citations
- 2024The effect of strain rate and anisotropy on the formability and mechanical behaviour of aluminium alloy 2024-T3citations
- 2023Influence of Aging Temperature on Mechanical Properties and Structure of M300 Maraging Steel Produced by Selective Laser Meltingcitations
- 2023High Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swagingcitations
- 2021ON THE EFFECTIVE SUBSTITUTION OF TURNING BY PERIPHERAL MILLING
Places of action
Organizations | Location | People |
---|
article
Effect of high-speed steel screw drill geometry on cutting performance when machining austenitic stainless steel
Abstract
Drilling into the solid material is one of the basic technological operations, which creates a cylindrical hole in an appropriate time with required quality. Drilling operation demands a favourable removal of chips from the cutting area because a creation of an undesirable shape of chips can impart a lower quality of the drilled hole corresponding with the generation of excess heat due to the intense contact of the chip with drill. The solution for a proper machining is a suitable modification of the drill geometry i.e., point and clearance angles as presented in current study. The tested drills are made of M35 high-speed steel characterized by a very thin core at the point of the drill. An interesting feature of the drills is the use of cutting speed higher than 30 m min(-1), with the feed of 0.2 mm per revolution. The surface roughness (Ra and Rz lower than 1 mu m and 6 mu m respectively), cylindricity (0.045 mm), roundness (0.025 mm), perpendicularity of the hole axis (0.025 mm), diameters and position of the individual holes were achieved for a drill with point angle 138.32 degrees and clearance angle 6.92 respectively. The increase of the drill point angle by 6 degrees resulted in the decrease in the feed force of more than 150 N. In addition, an increase of the clearance angle by 1 degrees resulted with a decrease in the feed force of 70 N. The results of the experiment showed that with the correct geometry of the tool the effective machining without using internal cooling can be realised.