People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kaiser, Jozef
Epoka University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Fatigue behaviour of titanium scaffolds with hierarchical porosity produced by material extrusion additive manufacturingcitations
- 2023Interlaboratory comparison for quantitative chlorine analysis in cement pastes with laser induced breakdown spectroscopycitations
- 2023Interlaboratory comparison for quantitative chlorine analysis in cement pastes with laser induced breakdown spectroscopycitations
- 2022Degradable magnesium-hydroxyapatite interpenetrating phase composites processed by current assisted metal infiltration in additive-manufactured porous preformscitations
- 2022Contour laser strategy and its benefits for lattice structure manufacturing by selective laser melting technologycitations
- 2021Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturingcitations
- 2020Strength and fracture mechanism of iron reinforced tricalcium phosphate cermet fabricated by spark plasma sintering ; Pevnost a lomové mechanismy železem zpevněhého trikalcium fosfátového cermetu vyrobeného metodou spark plasma sinteringcitations
- 2020Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Meltingcitations
- 2020Heat treatment induced phase transformations in zirconia and yttriastabilized zirconia monolithic aerogelscitations
- 2020High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures ; Vysoce pevné, biologicky odbouratelné a cytocompatibilní kompozity alfa trikalcium fosfát-železo pro časovou redukci fraktur kostícitations
- 2019Laboratory X-ray tomography for metal additive manufacturingcitations
- 2019SLM process parameters development of Cu-alloy Cu7.2Ni1.8Si1Crcitations
- 2018Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inkscitations
- 2017Fracture Mechanism of Interpenetrating Iron-Tricalcium Phosphate Composite ; Lomové mechanismy inpenetrovaného kompozizu železo - trikalcium fosfátcitations
- 2014Temperature effect on the microstructural development of Al–Ni layered binary couples produced by an unconventional methodcitations
Places of action
Organizations | Location | People |
---|
article
High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures ; Vysoce pevné, biologicky odbouratelné a cytocompatibilní kompozity alfa trikalcium fosfát-železo pro časovou redukci fraktur kostí
Abstract
In this work alpha tricalcium phosphate (a-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 lm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of a-TCP areas rather than b-TCP areas, suggesting that a-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures.