Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Šamořil, Tomáš

  • Google
  • 4
  • 20
  • 14

Brno University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Low temperature 2D GaN growth on Si(111) 7 x 7 assisted by hyperthermal nitrogen ions3citations
  • 2021Tuning Magnetic Properties of a Carbon Nanotube-Lanthanide Hybrid Molecular Complex through Controlled Functionalization9citations
  • 2020Depth Profile Analysis of Thin Oxide Layers on Polycrystalline Fe–Cr1citations
  • 2020Depth Profile Analysis of Thin Oxide Layers on Polycrystalline Fe–Cr1citations

Places of action

Chart of shared publication
Čalkovský, Vojtěch
1 / 1 shared
Horák, Michal
1 / 3 shared
Bartošík, Miroslav
1 / 1 shared
Konečný, Martin
1 / 1 shared
Mach, Jindřich
1 / 3 shared
Šikola, Tomáš
1 / 9 shared
Nezval, David
1 / 1 shared
Maniš, Jaroslav
1 / 3 shared
Kachtík, Lukáš
1 / 1 shared
Lassagne, Benjamin
1 / 3 shared
Mosse, Ibwanga S.
1 / 2 shared
Erasmus, Rudolph M.
1 / 2 shared
Blon, Thomas
1 / 6 shared
Ncube, Siphephile
1 / 4 shared
Sousa, Alvaro S. De
1 / 1 shared
Zijlstra, Gerrit
2 / 6 shared
Tesařová, Hana
2 / 2 shared
Ocelík, Václav
2 / 127 shared
De Hosson, Jeff Th. M.
1 / 20 shared
Hosson, Jeff Th. M. De
1 / 119 shared
Chart of publication period
2022
2021
2020

Co-Authors (by relevance)

  • Čalkovský, Vojtěch
  • Horák, Michal
  • Bartošík, Miroslav
  • Konečný, Martin
  • Mach, Jindřich
  • Šikola, Tomáš
  • Nezval, David
  • Maniš, Jaroslav
  • Kachtík, Lukáš
  • Lassagne, Benjamin
  • Mosse, Ibwanga S.
  • Erasmus, Rudolph M.
  • Blon, Thomas
  • Ncube, Siphephile
  • Sousa, Alvaro S. De
  • Zijlstra, Gerrit
  • Tesařová, Hana
  • Ocelík, Václav
  • De Hosson, Jeff Th. M.
  • Hosson, Jeff Th. M. De
OrganizationsLocationPeople

article

Low temperature 2D GaN growth on Si(111) 7 x 7 assisted by hyperthermal nitrogen ions

  • Čalkovský, Vojtěch
  • Horák, Michal
  • Bartošík, Miroslav
  • Konečný, Martin
  • Mach, Jindřich
  • Šikola, Tomáš
  • Nezval, David
  • Maniš, Jaroslav
  • Kachtík, Lukáš
  • Šamořil, Tomáš
Abstract

As the characteristic dimensions of modern top-down devices are getting smaller, such devices reach their operational limits imposed by quantum mechanics. Thus, two-dimensional (2D) structures appear to be one of the best solutions to meet the ultimate challenges of modern optoelectronic and spintronic applications. The representative of III-V semiconductors, gallium nitride (GaN), is a great candidate for UV and high-power applications at a nanoscale level. We propose a new way of fabrication of 2D GaN on the Si(111) 7 x 7 surface using post-nitridation of Ga droplets by hyperthermal (E = 50 eV) nitrogen ions at low substrate temperatures (T < 220 degrees C). The deposition of Ga droplets and their post-nitridation are carried out using an effusion cell and a special atom/ion beam source developed by our group, respectively. This low-temperature droplet epitaxy (LTDE) approach provides well-defined ultra-high vacuum growth conditions during the whole fabrication process resulting in unique 2D GaN nanostructures. A sharp interface between the GaN nanostructures and the silicon substrate together with a suitable elemental composition of nanostructures was confirmed by TEM. In addition, SEM, X-ray photoelectron spectroscopy (XPS), AFM and Auger microanalysis were successful in enabling a detailed characterization of the fabricated GaN nanostructures.

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • x-ray photoelectron spectroscopy
  • atomic force microscopy
  • Nitrogen
  • nitride
  • transmission electron microscopy
  • Silicon
  • two-dimensional
  • Gallium
  • III-V semiconductor