People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kaiser, Jozef
Epoka University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Fatigue behaviour of titanium scaffolds with hierarchical porosity produced by material extrusion additive manufacturingcitations
- 2023Interlaboratory comparison for quantitative chlorine analysis in cement pastes with laser induced breakdown spectroscopycitations
- 2023Interlaboratory comparison for quantitative chlorine analysis in cement pastes with laser induced breakdown spectroscopycitations
- 2022Degradable magnesium-hydroxyapatite interpenetrating phase composites processed by current assisted metal infiltration in additive-manufactured porous preformscitations
- 2022Contour laser strategy and its benefits for lattice structure manufacturing by selective laser melting technologycitations
- 2021Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturingcitations
- 2020Strength and fracture mechanism of iron reinforced tricalcium phosphate cermet fabricated by spark plasma sintering ; Pevnost a lomové mechanismy železem zpevněhého trikalcium fosfátového cermetu vyrobeného metodou spark plasma sinteringcitations
- 2020Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Meltingcitations
- 2020Heat treatment induced phase transformations in zirconia and yttriastabilized zirconia monolithic aerogelscitations
- 2020High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures ; Vysoce pevné, biologicky odbouratelné a cytocompatibilní kompozity alfa trikalcium fosfát-železo pro časovou redukci fraktur kostícitations
- 2019Laboratory X-ray tomography for metal additive manufacturingcitations
- 2019SLM process parameters development of Cu-alloy Cu7.2Ni1.8Si1Crcitations
- 2018Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inkscitations
- 2017Fracture Mechanism of Interpenetrating Iron-Tricalcium Phosphate Composite ; Lomové mechanismy inpenetrovaného kompozizu železo - trikalcium fosfátcitations
- 2014Temperature effect on the microstructural development of Al–Ni layered binary couples produced by an unconventional methodcitations
Places of action
Organizations | Location | People |
---|
article
Contour laser strategy and its benefits for lattice structure manufacturing by selective laser melting technology
Abstract
This paper deals with the research of the Selective Laser Melting (SLM) scanning strategy to produce lattice structures from AlSi10Mg powder material. Nowadays, most of the SLM end-users use the laser strategy and parameters recommended by powder or machine suppliers to produce different components. However, this setup can cause material and shape imperfection, especially in the case of low-volume lattice structures. In this study, the default meander scanning strategy for AlSi10Mg material was changed to contour strategy and its main SLM process parameters were developed. Commonly used experiments were modified to consider the lattice structure's shape and dimension. The results showed that by using developed parameters, i.e., recommended range of input linear energy of 0.25-0.4 J/mm; track width based on strut diameter, input linear energy and the orientation of strut; the overlap of the laser contour tracks of 35% and inside-out direction; it is possible to produce lattice structures with high material density (more than 99.8%) and low surface roughness in a wide range of strut diameters from 0.6 to 3 mm. The differences in lattice structure production of vertical and inclined struts are described and discussed in relation to the SLM process during powder melting with use of thermal transient simulation.