People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Paloušek, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Direct comparison between Co-28Cr-6Mo alloy prepared by Selective Laser Melting and traditional investment castingcitations
- 2022Different Response of Cast and 3D-Printed Co-Cr-Mo Alloy to Heat Treatment: A Thorough Microstructure Characterizationcitations
- 2022Contour laser strategy and its benefits for lattice structure manufacturing by selective laser melting technologycitations
- 2021Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturingcitations
- 2020Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Meltingcitations
- 2017Fatigue Behaviour Evaluation of Additively and Conventionally Produced Materials by Acoustic Emission Methodcitations
Places of action
Organizations | Location | People |
---|
article
Different Response of Cast and 3D-Printed Co-Cr-Mo Alloy to Heat Treatment: A Thorough Microstructure Characterization
Abstract
The Co-Cr-Mo alloy is a biomaterial with very good corrosion resistance and wear resistance; thus, it is widely applied for knee replacements. The wear resistance is influenced by the amount of hcp phase and morphology of carbidic precipitates, which can both be altered by heat treatment. This study compares a conventional knee replacement manufactured by investment casting with a material prepared by the progressive technology of 3D printing. The first set of results shows a different response of both materials in increasing hardness with annealing at increasing temperatures up to the transformation temperature. Based on these results, solution treatment and subsequent aging at conditions to reach the maximum hardness was applied. Microstructural changes were studied thoroughly by means of optical, scanning electron and transmission electron microscopy. While increased hardness in the conventional material is caused by the precipitation of fine hard carbides combined with an increase in the hcp phase by isothermal transformation, a massive fcc -> hcp transformation is the main cause for the hardness increase in the 3D-printed material.