People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Crawford, Deborah E.
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022High-energy ball milling and spark plasma sintering of molybdenum - lanthanum oxide (Mo-La2O3) and molybdenum - lanthanum zirconate (Mo-La2Zr2O7) composite powderscitations
- 2020Continuous and scalable synthesis of a porous organic cage by twin screw extrusion (TSE)citations
- 2020Organic synthesis by Twin Screw Extrusion (TSE): Continuous, scalable and solvent-freecitations
- 2020Papain-catalysed mechanochemical synthesis of oligopeptides by milling and twin-screw extrusion: application in the Juliá-Colonna enantioselective epoxidationcitations
- 2018Papain-catalysed mechanochemical synthesis of oligopeptides by milling and twin-screw extrusion: application in the Julia-Colonna enantioselective epoxidationcitations
- 2017Organic synthesis by Twin Screw Extrusion (TSE): continuous, scalable and solvent-freecitations
- 2017Continuous multi-step synthesis by extrusion – telescoping solvent-free reactions for greater efficiencycitations
- 2016Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusioncitations
Places of action
Organizations | Location | People |
---|
article
High-energy ball milling and spark plasma sintering of molybdenum - lanthanum oxide (Mo-La2O3) and molybdenum - lanthanum zirconate (Mo-La2Zr2O7) composite powders
Abstract
The current study is focused on the preparation of Mo-10 vol%La2O3 and Mo-10 vol% La2Zr2O7 composite powders via low- and high-energy ball milling approaches as potential candidates for near-future high-temperature structural applications. The mechanical milling parameters play a critical role on the final powder's microstructure. When using the high-energy milling mode (using 800 rpm, ball-to-powder ratio (BPR) 100: 6), the homogeneous powder agglomerates are formed with refined laminated microstructure and more uniform ceramic phase distribution in both Mo-La2O3 and Mo-La2Zr2O7 systems compared to the powders produced by means of the low-energy milling mode (using 350 rpm, BPR 100: 6), where inhomogeneous powder mixture with less embedding of ceramic phases into Mo agglomerates was obtained. This study also focuses on the evaluation of high-temperature phase and microstructural stability of the produced composite powders treated at the temperature of 1300 degrees C under the different gaseous environments, including ambient, inert and reducing atmospheres. The Mo-10 vol% La2Zr2O7 composite powder exhibited better thermal stability during the high-temperature exposure in all tested atmospheres in comparison with the Mo-La2O3 composite powder, since it revealed less intensive formation of the intermediate phases, such as lanthanum oxymolybdates. Therefore, the Mo-10 vol%La2Zr2O7 composite powder was used further for consolidation by means of spark plasma sintering at 1600 degrees C. The successful production of Mo-La2Zr2O7 composite with homogeneous distribution of ceramic phase, the grain size about of 5 mu m, and hardness of 3.4 GPa was not reported so far. ; 2023-10-27