Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mozalev, Alexander

  • Google
  • 9
  • 19
  • 66

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Porous-anodic-alumina-templated Ta-Nb-alloy oxide coatings via the magnetron-sputtering anodizing as novel 3D nanostructured electrodes for energy-storage applications5citations
  • 2024XPS characterization of metal-oxide nanocolumn arrays via anodizing Al/Nb/Mo metal layerscitations
  • 2023Se-doped Nb2O5-Al2O3 composite-ceramic nanoarrays via the anodizing of Al/Nb bilayer in selenic acid6citations
  • 2021Metal-substrate-supported tungsten-oxide nanoarrays via porous-alumina-assisted anodization: from nanocolumns to nanocapsules and nanotubes ; Nanouspořádané pole oxidů wolframu na kovovém substrátu vyrobené pomocí anodizace přes porézní aluminu: od nanosloupků po nanokaplsa a nanotrubky38citations
  • 2021Anodic formation and SEM characterization of zirconium oxide nanostructured filmscitations
  • 2021Dielectric properties of nanostructured mixed-oxide films formed by anodizing Al/Zr bilayerscitations
  • 2021The Growth, Composition, and Functional Properties of Self‐Organized Nanostructured ZrO2‐Al2O3 Anodic Films for Advanced Dielectric Applications7citations
  • 2018Resistive switching in TiO2 nanocolumn arrays electrochemically grown2citations
  • 2018Porous‐Alumina‐Assisted Growth of Nanostructured Anodic Films on Ti−Nb Alloys8citations

Places of action

Chart of shared publication
Gispert-Guirado, Francesc
2 / 2 shared
Llobet, Eduard
3 / 14 shared
Bendová, Mária
5 / 5 shared
Habazaki, Hiroki
1 / 5 shared
Prášek, Jan
3 / 4 shared
Kejík, Lukáš
1 / 1 shared
Guell, Frank
1 / 1 shared
Pytlíček, Zdeněk
2 / 3 shared
Kamnev, Kirill
4 / 4 shared
Sepúlveda Sepúlveda, Lina Marcela
1 / 1 shared
Kolibalova, Eva
1 / 2 shared
Prasek, Jan
1 / 1 shared
Michalicka, Jan
1 / 9 shared
Bendova, Maria
2 / 3 shared
Sepúlveda, Marcela
1 / 2 shared
Hubálek, Jaromír
1 / 4 shared
Márik, Marian
1 / 1 shared
Kolar, Jakub
1 / 1 shared
Gispert Guirado, Francesc
1 / 1 shared
Chart of publication period
2024
2023
2021
2018

Co-Authors (by relevance)

  • Gispert-Guirado, Francesc
  • Llobet, Eduard
  • Bendová, Mária
  • Habazaki, Hiroki
  • Prášek, Jan
  • Kejík, Lukáš
  • Guell, Frank
  • Pytlíček, Zdeněk
  • Kamnev, Kirill
  • Sepúlveda Sepúlveda, Lina Marcela
  • Kolibalova, Eva
  • Prasek, Jan
  • Michalicka, Jan
  • Bendova, Maria
  • Sepúlveda, Marcela
  • Hubálek, Jaromír
  • Márik, Marian
  • Kolar, Jakub
  • Gispert Guirado, Francesc
OrganizationsLocationPeople

article

Metal-substrate-supported tungsten-oxide nanoarrays via porous-alumina-assisted anodization: from nanocolumns to nanocapsules and nanotubes ; Nanouspořádané pole oxidů wolframu na kovovém substrátu vyrobené pomocí anodizace přes porézní aluminu: od nanosloupků po nanokaplsa a nanotrubky

  • Gispert-Guirado, Francesc
  • Pytlíček, Zdeněk
  • Llobet, Eduard
  • Bendová, Mária
  • Mozalev, Alexander
Abstract

An array of highly aligned tungsten-oxide (TO) nanorods, similar to 80 nm wide, up to 900 nm long, spatially separated at their bottoms by tungsten metal on a substrate is synthesized via the self-localized anodization of aluminum followed by the porous-alumina-assisted re-anodization of tungsten in a sputter-deposited Al/W bilayer. Moreover, the pore-directed TO nanocapsules may grow, which can be electrochemically top-opened in alumina nanopores and transformed to TO nanotubes, representing unique architectures built up on tungsten substrates to date. The as-grown nanorods are composed of amorphous WO3 mixed with minor amounts of WO2 and Al2O3 in the outer layer and oxide-hydroxide compound (WO(3 center dot)nH(2)O) with aluminum tungstate (2Al(2)O(3)center dot 5WO(3)), mainly present inside the rods. Once the growing oxide fills up the pores, it comes out as an array of exotic protuberances of highly hydrated TO, with no analogues among the other valve-metal oxides. Vacuum or air annealing at 550 degrees C increases the portion of non-stoichiometric oxides 'doped' with OH-groups and gives monoclinic WO2.9 or a mixture of WO3 and WO2.9 nanocrystalline phases, respectively. The nanorods show n-type semiconductor behavior when examined by Mott-Schottky analysis, with a high carrier density of 7 x 10(19) or 3 x 10(19) cm(-3) for the air- or vacuum-annealed samples, associated with a charge depletion layer of about 8 or 10 nm, respectively. A model for the growth of the metal-substrate-separated TO nanocapsules and tubes is proposed and experimentally justified. The findings suggest that the new TO nanoarrays with well-defined nano-channels for carriers may form the basic elements for photoanodes or emerging 3-D micro- and nano-sensors. ; Řady vysoce uspořádaných nanodrátků oxidů wolframu (TO), s šířkou 80 nm a délkou 900 nm, oddělené na na jejich spodní části od substrátu pomocí wolframu byli připraveny pomocí anodizace hliníků do podoby porézní aluminy a následně pokračující anodizací wolframu přes tuto aluminu z ...

Topics
  • porous
  • density
  • impedance spectroscopy
  • pore
  • compound
  • amorphous
  • phase
  • nanotube
  • aluminium
  • annealing
  • tungsten
  • aligned
  • n-type semiconductor