People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ťažký, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Study of the effect of consistency on the abrasion resistance of concretecitations
- 2021The Effect of the Composition of a Concrete Mixture on Its Volume Changescitations
- 2021The Effect of the Composition of a Concrete Mixture on Its Volume Changescitations
- 2021New Possibilities of Determining the Resistance of Cement Composite to Abrasion by Fast Flowing Water
- 2020Abrasive Wear Resistance of Concrete in Connection with the Use of Crushed and Mined Aggregate, Active and Non-Active Mineral Additives, and the Use of Fibers in Concretecitations
- 2020Abrasive Wear Resistance of Concrete in Connection with the Use of Crushed and Mined Aggregate, Active and Non-Active Mineral Additives, and the Use of Fibers in Concretecitations
- 2020Effect of type of aggregate on abrasion resistance of concrete
- 2016Influence of Use Fluidized Fly Ash Combined with High Temperature Fly Ash on Microstructure of Cement Compositecitations
- 2016Reduction of concrete´s shrinkage by controlled formation of monosulphate and trisulphate
- 2016POSSIBILITIES OF DETERMINATION OF OPTIMAL DOSAGE OF POWER PLANT FLY ASH FOR CONCRETEcitations
- 2016Concrete with Fluidized Bed Combustion Fly Ash Based Light Weight Aggregatecitations
Places of action
Organizations | Location | People |
---|
article
The Effect of the Composition of a Concrete Mixture on Its Volume Changes
Abstract
The presented research aims to clarify the specific effect of the individual components of concrete with Portland cement CEM I 42.5 R on the volume changes of concrete. The effect of the filler component was evaluated from the point of view of the composition and type of aggregate (crushed versus mined) and from the point of view of the mineralogical composition of the aggregate. Concrete formulas with a maximum aggregate grain size of 16 and 22 mm were assessed. The effect of the binder component on the shrinkage of the concrete was monitored on the concrete mixtures produced using the same aggregate and maintaining the same strength class of concrete, C 45/55. The effect of the addition of finely ground limestone, finely ground granulated blast furnace slag and coal high-temperature fly ash was monitored. It was found that the maximum aggregate grain and the type of grading curve do not have a significant effect on the volume changes of concrete. Concretes with mined aggregates showed lower shrinkage than concretes with crushed aggregates. The most significant is the effect of the type of aggregate on the volume changes in the first 24 h. Mineral additives have a positive effect on the elimination of the volume changes of concrete, while the addition of high-temperature fly ash proved to be the most suitable.