People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lepcio, Petr
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Naphthalene-stilbenes as effective visible-light sensitizers to study the effect of diluent and nanofillers on in situ photopolymerization and 3D-VAT printing processcitations
- 2023Carboxymethyl starch as a reducing and capping agent in the hydrothermal synthesis of selenium nanostructures for use with three-dimensional-printed hydrogel carrierscitations
- 20223D printing and post-curing optimization of photopolymerized structures: Basic concepts and effective tools for improved thermomechanical propertiescitations
- 2022Harnessing light to create functional, three-dimensional polymeric materials: multitasking initiation systems as the critical key to successcitations
- 2021In-situ self-assembly of silica nanoparticles into microfibers with potential to reinforce polymerscitations
- 2019Efekt submikrometrických rysů na reologii polymerních nanokompozitů ; Effect of sub-micrometer structural features on rheology of polymer nanocomposites
- 2019Effect of nanoparticle organization on molecular mobility and mechanical properties of polymer nanocompositescitations
Places of action
Organizations | Location | People |
---|
conferencepaper
In-situ self-assembly of silica nanoparticles into microfibers with potential to reinforce polymers
Abstract
Silica nanosphere with a diameter of 10–15 nm were organized into fibers with a lenght of 15 mm and an aspect ratio of 100 by self-assembly in 1,4-dioxane. Dioxane causes a positive zeta potential on the silica surface thus silica in dioxane may behave as an acceptor (base catalyzer) causing decomposition of dioxane to acetaldehyde and its consequent polymerization into oligomer or polymer (polyoxyethylene) chains that bond the particles together. This process was proved using a thermogravimetric analysis which showed that the amount of polymerized dioxane is in the rang 2–3.5 wt. %. Composition of the polymerized dioxane was elucidated employing FTIR. The formation of fibrillar structures was driven kinetically during solidification. The size of the fibers was controlled by the drying rate. Fast-drying results in longer and thinner fibers. Nanosilica fibers can also be formed in a polymer matrix (e.g., polycarbonate) via the solvent-casting method. Formation of fibers in-situ in a soft rubber polymer matrix in one-step processing can provide a polymer reinforcement at two hierarchical levels – at the nanoscale by immobilizing polymer chains due to the presence of nanoparticles and the microscale by strain transfer to the fibers. Elastic modulus of the fibers was determined by wrinkling technique by compression on the elastic surface and by thermal treatment in the polycarbonate matrix. Both techniques showed modulus 43–46 MPa.