People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sobola, Dinara
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Analysis of processing efficiency, surface, and bulk chemistry, and nanomechanical properties of the Monel<sup>®</sup> alloy 400 after ultrashort pulsed laser ablationcitations
- 2024Optical Properties of Yttrium Ferrite Films Prepared by Pulse Laser Deposition
- 2024Characterization of field emission from oxidized copper emitterscitations
- 2024Optical Properties of YttriumOrthoferrite Films Prepared by PlasmaLaser Deposition
- 2024Optical and electrical performance of translucent BaTiO3-BaSnO3 ceramicscitations
- 2024Comprehensive analysis of charge carriers dynamics through the honeycomb structure of graphite thin films and polymer graphite with applications in cold field emission and scanning tunneling microscopycitations
- 2024Analysis of processing efficiency, surface, and bulk chemistry, and nanomechanical properties of the Monel® alloy 400 after ultrashort pulsed laser ablationcitations
- 2024Field Ion Microscopy of Tungsten Nano-Tips Coated with Thin Layer of the EpoxyResin
- 2023Exploring the Piezoelectric Properties of Bismuth Ferrite Thin Films Using Piezoelectric Force Microscopy: A Case Studycitations
- 2023Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membranecitations
- 2023Electrical characteristics of different concentration of silica nanoparticles embedded in epoxy resincitations
- 2022Nanoscale surface dynamics of RF-magnetron sputtered CrCoCuFeNi high entropy alloy thin filmscitations
- 2022Nanoscale surface dynamics of RF-magnetron sputtered CrCoCuFeNi high entropy alloy thin filmscitations
- 2022Characterization and Evaluation of Engineered Coating Techniques for Different Cutting Tools - Reviewcitations
- 2022Characterization and Evaluation of Engineered Coating Techniques for Different Cutting Tools-Reviewcitations
- 2022Advances in sustainable grinding of different types of the titanium biomaterials for medical applicationscitations
- 2022Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Depositioncitations
- 2022Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3citations
- 2021PVDF Fibers Modification by Nitrate Salts Dopingcitations
- 2021Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubescitations
- 2021Morphological features in aluminum nitride epilayers prepared by magnetron sputtering ; Morfologické detaily v AlN epivrstvách připravených magnetronovým napařovánímcitations
- 2021Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakescitations
- 2021Field emission properties of polymer graphite tips prepared by membrane electrochemical etchingcitations
- 2020Scanning proximal microscopy study of the thin layers of silicon carbide aluminum nitride solid solution manufactured by fast sublimation epitaxy ; Použitá sondového rastrovacího mikroskopu pro studium tenkých vrstev karbidu křemíku a nitridu hliníku vyrobených rychlou sublimační epitaxí
Places of action
Organizations | Location | People |
---|
article
Field emission properties of polymer graphite tips prepared by membrane electrochemical etching
Abstract
This paper investigates field emission behavior from the surface of a tip that was prepared from polymer graphite nanocomposites subjected to electrochemical etching. The essence of the tip preparation is to create a membrane of etchant over an electrode metal ring. The graphite rod acts here as an anode and immerses into the membrane filled with alkali etchant. After the etching process, the tip is cleaned and analyzed by Raman spectroscopy, investigating the chemical composition of the tip. The topography information is obtained using the Scanning Electron Microscopy and by Field Emission Microscopy. The evaluation and characterization of field emission behavior is performed at ultra-high vacuum conditions using the Field Emission Microscopy where both the field electron emission pattern projected on the screen and current–voltage characteristics are recorded. The latter is an essential tool that is used both for the imaging of the tip surfaces by electrons that are emitted toward the screen, as well as a tool for measuring current–voltage characteristics that are the input to test field emission orthodoxy.