Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Másilko, Jiří

  • Google
  • 10
  • 29
  • 189

Brno University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2023Early and middle stages of multicomponent cement hydration under the effect of geothermal water and increased temperatures3citations
  • 2022Effect of alkali salts on the hydration process of belite clinker5citations
  • 2022The thermal analysis of zinc oxide‑contaminated Portland cement blended with thiocyanates and determination of their effect on hydration and properties2citations
  • 2022Synthesis, Structural, Morphological and Thermal Characterization of Five Different Silica-Polyethylene Glycol-Chlorogenic Acid Hybrid Materials ; Syntéza, strukturní, morfologická a tepelná charakterizace pěti různých hybridních materiálů silika-polyethylenglykol-kyselina chlorogenová7citations
  • 2021The Effect of Crystallization and Phase Transformation on the Mechanical and Electrochemical Corrosion Properties of Ni-P Coatings22citations
  • 2020The Characterization of Fixation of Ba, Pb, and Cu in Alkali-Activated Fly Ash/Blast Furnace Slag Matrix30citations
  • 2020Synthesis conditions influencing formation of MAPbBr3 perovskite nanoparticles prepared by the ligandassisted precipitation method45citations
  • 2020Influence of Pb Dosage on Immobilization Characteristics of Different Types of Alkali-Activated Mixtures and Mortars3citations
  • 2020The effect of heat-treatment on properties of Ni-P coatings deposited on AZ91 magnesium alloy50citations
  • 2020Cement Kiln By-Pass Dust: An Effective Alkaline Activator for Pozzolanic Materials22citations

Places of action

Chart of shared publication
Novotný, Radoslav
4 / 11 shared
Sedlačík, Martin
1 / 2 shared
Iliushchenko, Valeriia
1 / 1 shared
Cába, Vladislav
1 / 1 shared
Kalina, Lukas
1 / 1 shared
Šiler, Pavel
2 / 2 shared
Švec, Jiří
1 / 2 shared
Koplík, Jan
3 / 6 shared
Soukal, Frantisek
1 / 2 shared
Matějka, Lukáš
1 / 1 shared
Ciprioti, Stefano Vecchio
1 / 4 shared
Catauro, Michelina
1 / 55 shared
Risoluti, Roberta
1 / 3 shared
Brescher, Roman
1 / 1 shared
Buchtík, Martin
2 / 10 shared
Doskočil, Leoš
1 / 6 shared
Wasserbauer, Jaromír
2 / 12 shared
Doležal, Pavel
1 / 8 shared
Šoukal, František
1 / 3 shared
Kalina, Lukáš
3 / 8 shared
Jančík, Ján
1 / 3 shared
Krajčovič, Jozef
1 / 1 shared
Weiter, Martin
1 / 3 shared
Jančík Procházková, Anna
1 / 1 shared
Pořízka, Jaromír
1 / 1 shared
Březina, Matěj
1 / 4 shared
Hasoňová, Michaela
1 / 2 shared
Bílek, Vlastimil
1 / 6 shared
Kiripolský, Tomáš
1 / 1 shared
Chart of publication period
2023
2022
2021
2020

Co-Authors (by relevance)

  • Novotný, Radoslav
  • Sedlačík, Martin
  • Iliushchenko, Valeriia
  • Cába, Vladislav
  • Kalina, Lukas
  • Šiler, Pavel
  • Švec, Jiří
  • Koplík, Jan
  • Soukal, Frantisek
  • Matějka, Lukáš
  • Ciprioti, Stefano Vecchio
  • Catauro, Michelina
  • Risoluti, Roberta
  • Brescher, Roman
  • Buchtík, Martin
  • Doskočil, Leoš
  • Wasserbauer, Jaromír
  • Doležal, Pavel
  • Šoukal, František
  • Kalina, Lukáš
  • Jančík, Ján
  • Krajčovič, Jozef
  • Weiter, Martin
  • Jančík Procházková, Anna
  • Pořízka, Jaromír
  • Březina, Matěj
  • Hasoňová, Michaela
  • Bílek, Vlastimil
  • Kiripolský, Tomáš
OrganizationsLocationPeople

article

The Effect of Crystallization and Phase Transformation on the Mechanical and Electrochemical Corrosion Properties of Ni-P Coatings

  • Brescher, Roman
  • Buchtík, Martin
  • Doskočil, Leoš
  • Wasserbauer, Jaromír
  • Doležal, Pavel
  • Másilko, Jiří
Abstract

This paper deals with the study of the crystallization and phase transformation of Ni-P coatings deposited on AZ91 magnesium alloy. Prepared samples were characterized in terms of surface morphology and elemental composition by means of scanning electron microscopy with energy-dispersive spectroscopy analysis. The results of X-ray diffraction analysis and differential scanning calorimetry suggested that increasing the phosphorus content caused Ni-P coatings to develop an amorphous character. The crystallization of Ni was observed at 150, 250, and 300 °C for low-, medium- and high-phosphorus coatings, respectively. The Ni crystallite size increased with increasing temperature and decreasing P content. Conversely, the presence of the Ni3P phase was observed at a maximum peak of 320 °C for the high-phosphorus coating, whereas the crystallization of the Ni3P phase shifted to higher temperatures with decreasing P content. The Ni3P crystallite size increased with increasing temperature and increasing P content. An increase in microhardness due to the arrangement of Ni atoms and Ni3P precipitation was observed. The deposition of as-deposited Ni-P coatings led to an improvement in the corrosion resistance of AZ91. However, the heat treatment of coatings resulted in a deterioration in corrosion properties due to the formation of microcracks.

Topics
  • Deposition
  • surface
  • amorphous
  • corrosion
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • Magnesium
  • magnesium alloy
  • Magnesium
  • precipitation
  • differential scanning calorimetry
  • crystallization
  • Phosphorus
  • spectroscopy