People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Šimonová, Hana
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Hybrid Geopolymer Composites Based on Fly Ash Reinforced with Glass and Flax Fibers
- 2021Mechanical Fracture and Fatigue Characteristics of Fine-Grained Composite Based on Sodium Hydroxide-Activated Slag Cured under High Relative Humiditycitations
- 2021Deflection of an eccentric crack under mixed-mode conditions in an SCB specimencitations
- 2021Strength characteristics of concrete exposed to the elevated temperatures according to the temperature-time curve ISO 834citations
- 2021Influence of rock inclusion composition on the fracture response of cement-based composite specimenscitations
- 2021Advanced Evaluation of the Freeze–Thaw Damage of Concrete Based on the Fracture Testscitations
- 2021Fracture parameters of fly ash geopolymer mortars with carbon black and graphite filler
- 2021Numerical analysis of a semi-circular disc with an angled crack loaded in mixed-mode
- 2020Modelling of interfacial transition zone effect on resistance to crack propagation in fine-grained cement-based compositescitations
- 2020Mechanical Fracture and Fatigue Characteristics of Fine-Grained Composite Based on Sodium Hydroxide-Activated Slag Cured under High Relative Humiditycitations
- 2020Multi-parameter fracture mechanics: crack path in a mixed-mode specimencitations
- 2020Components of the Fracture Response of Alkali-Activated Slag Composites with Steel Microfiberscitations
- 2018Fracture properties of concrete specimens made from alkali activated binders.citations
Places of action
Organizations | Location | People |
---|
article
Mechanical Fracture and Fatigue Characteristics of Fine-Grained Composite Based on Sodium Hydroxide-Activated Slag Cured under High Relative Humidity
Abstract
A typical example of an alternative binder to commonly used Portland cement is alkali-activated binders that have high potential as a part of a toolkit for sustainable construction materials. One group of these materials is alkali-activated slag. There is a lack of information about its long-term properties. In addition, its mechanical properties are characterized most often in terms of com-pressive strength; however, it is not sensitive enough to sufficiently cover the changes in micro-structure such as microcracking, and thus, it poses a potential risk for practical utilization. Con-sequently, the present study deals with the determination of long-term mechanical fracture and fatigue parameters of the fine-grained composites based on this interesting binder. The me-chanical fracture parameters are primarily obtained through the direct evaluation of fracture test data via the effective crack model, the work-of-fracture method, the double-K fracture model, and complemented by parameter identification using the inverse analysis. The outcome of cy-clic/fatigue fracture tests is represented by a Wöhler curve. The results presented in this article represent the complex information about material behavior and valuable input parameters for material models used for numerical simulations of crack propagation in this quasi-brittle material.