People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ťažký, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Study of the effect of consistency on the abrasion resistance of concretecitations
- 2021The Effect of the Composition of a Concrete Mixture on Its Volume Changescitations
- 2021The Effect of the Composition of a Concrete Mixture on Its Volume Changescitations
- 2021New Possibilities of Determining the Resistance of Cement Composite to Abrasion by Fast Flowing Water
- 2020Abrasive Wear Resistance of Concrete in Connection with the Use of Crushed and Mined Aggregate, Active and Non-Active Mineral Additives, and the Use of Fibers in Concretecitations
- 2020Abrasive Wear Resistance of Concrete in Connection with the Use of Crushed and Mined Aggregate, Active and Non-Active Mineral Additives, and the Use of Fibers in Concretecitations
- 2020Effect of type of aggregate on abrasion resistance of concrete
- 2016Influence of Use Fluidized Fly Ash Combined with High Temperature Fly Ash on Microstructure of Cement Compositecitations
- 2016Reduction of concrete´s shrinkage by controlled formation of monosulphate and trisulphate
- 2016POSSIBILITIES OF DETERMINATION OF OPTIMAL DOSAGE OF POWER PLANT FLY ASH FOR CONCRETEcitations
- 2016Concrete with Fluidized Bed Combustion Fly Ash Based Light Weight Aggregatecitations
Places of action
Organizations | Location | People |
---|
article
Abrasive Wear Resistance of Concrete in Connection with the Use of Crushed and Mined Aggregate, Active and Non-Active Mineral Additives, and the Use of Fibers in Concrete
Abstract
Virtually every concrete structure comes into contact with abrasive effects of flowing media or solids, which have a direct impact on the durability of concrete. An abrasive effect is most pronounced in transport or water management structures, and these structures are often designed for a significantly longer service life (usually 100 years). This research evaluates the influence of the filler component in terms of the type of aggregate and its mineralogical composition on concrete abrasion resistance. As part of the impact of the binder component, several concrete mixtures were produced using the same aggregate and maintaining the same strength class with the addition of different types of active and inert mineral additives. In other parts of the research, the effect of adding fiber reinforcement on the abrasion resistance of concrete was verified. Mutual connections and correlations in different age groups (7, 28 and 90 days) were sought for all obtained results. The abrasion resistance of the composite was monitored by using standard procedures, especially using a Böhm device. It was found that for good abrasion resistance of concrete, it is not necessary to produce concretes with high strength classes using often expensive mineral additives (microsilica) and quality aggregates, but the maturation time of the composite and its microstructure plays an important role.