Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Luks, Tomáš

  • Google
  • 2
  • 6
  • 6

Brno University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023The Efficient Way to Design Cooling Sections for Heat Treatment of Long Steel Products4citations
  • 2020Nozzle cooling of hot surfaces with various orientations ; Chlazení horkých povrchů s různou orientací2citations

Places of action

Chart of shared publication
Resl, Ondřej
1 / 5 shared
Chabičovský, Martin
1 / 4 shared
Komínek, Jan
1 / 3 shared
Kotrbáček, Petr
1 / 7 shared
Horský, Jaroslav
1 / 1 shared
Ondroušková, Jana
1 / 1 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Resl, Ondřej
  • Chabičovský, Martin
  • Komínek, Jan
  • Kotrbáček, Petr
  • Horský, Jaroslav
  • Ondroušková, Jana
OrganizationsLocationPeople

article

Nozzle cooling of hot surfaces with various orientations ; Chlazení horkých povrchů s různou orientací

  • Horský, Jaroslav
  • Ondroušková, Jana
  • Luks, Tomáš
Abstract

The aim of this research is an investigation of hot surface orientation influence on heat transfer during cooling by a nozzle. Two types of nozzles were used for the experiments (air-mist nozzle and hydraulic nozzle). A test plate was cooled in three positions – top, side and bottom position. The aim was to simulate a cooling situation in the secondary zone of a continuous casting machine. Temperature was measured in seven locations under the cooled surface by thermocouples. These data were used for an inverse heat conduction problem and then boundary conditions were computed. These boundary conditions are represented by surface temperature, heat transfer coefficient and heat flux. Results from an inverse calculation were compared in each position of thermocouples separately. The total cooling intensity was specified for all configurations of nozzles and test plate orientation. Results are summarised in a graphical and numerical format. ; Cílem tohoto výzkumu je zkoumání vlivu orientace horkých povrchů na přestup tepla během chlazení tryskou. Pro experimenty byly použity dva typy trysek – vodovzdušná a vodní. Zkušební deska byla chlazena postupně ve třech pozicích – shora, ze strany a zdola. Cílem bylo simulovat chlazení v sekundární zóně kontinuálního lití. Teplota byla měřena termočlánky umístěnými na sedmi místech pod chladícím povrchem. Naměřená data byla použita pro inverzní úlohu vedení tepla, pomocí které byly spočítány okrajové podmínky. Těmi jsou povrchová teplota, součinitel přestupu tepla a tepelný tok. Výsledky z inverzní úlohy byly srovnány pro jednotlivé pozice termočlánků. Celková intenzita chlazení byla specifikována pro všechny konfigurace trysek a orientace chlazeného povrchu. Výsledky jsou shrnuty v grafech a numerickém formátu.

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • continuous casting