People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dvořák, Karel
Epoka University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Effect of preparation process on purity of tricalcium aluminate
- 2024Durability of Wood–Cement Composites with Modified Composition by Limestone and Stabilised Spruce Chipscitations
- 2024Early hydration of C<sub>4</sub>AF with silica fume and its role on katoite compositioncitations
- 2024Effect of preparation process on purity of tricalcium aluminate ; Vliv procesu přípravy na čistotu trikalcium aluminátu
- 2023Determining Hot Deformation Behavior and Rheology Laws of Selected Austenitic Stainless Steelscitations
- 2022Application of a Method for Measuring the Grindability of Fine-Grained Materials by High-Speed Milling ; Aplikace metody pro měření brousitelnosti jemnozrnných materiálu vysokorychlostním mletímcitations
- 2022Comparison of separate and co-grinding of the blended cements with the pozzolanic component ; Srovnání samostatného a společného mletí směsných cementů s puzolánovou složkoucitations
- 2021Comparison of mechanical properties of geopolymers from different raw materials with the addition of waste glass ; Porovnání mechanických vlastností geopolymerů z různých surovin s přídavkem odpadního skla
- 2021Determining Johnson-Cook Constitutive Equation for Low-Carbon Steel via Taylor Anvil Test ; Stanovení Johnson-Cookovy konstitutivní rovnice pro nízkouhlíkovou ocel pomocí Taylorovy kovadlinkové zkouškycitations
- 2021Composite Binder Containing Industrial By-Products (FCCCw and PSw) and Nano SiO2citations
- 2020The role of different high energy ball milling conditions of molybdenum powder on the resulting particles size and morphology
- 2020Strength and fracture mechanism of iron reinforced tricalcium phosphate cermet fabricated by spark plasma sintering ; Pevnost a lomové mechanismy železem zpevněhého trikalcium fosfátového cermetu vyrobeného metodou spark plasma sinteringcitations
- 2020Heat treatment induced phase transformations in zirconia and yttriastabilized zirconia monolithic aerogelscitations
- 2020High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures ; Vysoce pevné, biologicky odbouratelné a cytocompatibilní kompozity alfa trikalcium fosfát-železo pro časovou redukci fraktur kostícitations
- 2020Metal matrix to ceramic matrix transition via feedstock processing of SPS titanium composites alloyed with high silicone contentcitations
- 2017Fracture Mechanism of Interpenetrating Iron-Tricalcium Phosphate Composite ; Lomové mechanismy inpenetrovaného kompozizu železo - trikalcium fosfátcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
The role of different high energy ball milling conditions of molybdenum powder on the resulting particles size and morphology
Abstract
High energy ball milling is a powder processing method in which the powder particle size can be decreased to micrometer size in a relatively short period of time. This method is based on the friction and the high energy kinetic collisions between the balls and the trapped powder particles. The milling process is influenced by many process variables such as mainly the rotational speed, ball to powder weight ratio and processing time. In the present study, high energy ball milling process was performed for molybdenum powder using a high energy ball mill under different milling conditions varying the: (i) rotational speed from 600 to 800 rpm, (ii) ball to powder weight ratio of 100:3 and 100:6, (iii) milling time in the range of 10 to 60 minutes, (iv) process control agent using polyethylene glycol, and (v) milling atmosphere under air or nitrogen. The used initial molybdenum powder was of globular morphology and 100 µm in particle size. The powders after milling were characterized by a scanning electron microscope (SEM) and a laser diffraction size analysis. The particle size of milled powders was decreased down to 1.1 µm. As the most effective ball to powder weight ratio was found 100:6 with the milling speed of 800 rpm. The milling time played a crucial role for the refinement of particles up to 45 min, where the further milling had negligible effect on the overall trend of particle size evolution.