People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Urbánek, Michal
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Magnetic anisotropy and GGG substrate stray field in YIG films down to millikelvin temperaturescitations
- 2024Nesting BiVO<sub>4</sub> nanoislands in ZnO nanodendrites by two-step electrodeposition for efficient solar water splittingcitations
- 2023Propagating spin-wave spectroscopy in a liquid-phase epitaxial nanometer-thick YIG film at millikelvin temperaturescitations
- 2023Propagating spin-wave spectroscopy in a liquid-phase epitaxial nanometer-thick YIG film at millikelvin temperaturescitations
- 2022Effect of calcination temperature on electrochemical performance of niobium oxides/carbon compositescitations
- 2022Effect of Gd addition on the structural and magnetic properties of L1(0)-FePt alloy thin filmscitations
- 2022Effect of Gd addition on the structural and magnetic properties of L10-FePt alloy thin filmscitations
- 2021Spin-Wave Emission from Vortex Cores under Static Magnetic Bias Fieldscitations
- 2021Excellent, Lightweight and Flexible Electromagnetic Interference Shielding Nanocomposites Based on Polypropylene with MnFe2O4 Spinel Ferrite Nanoparticles and Reduced Graphene Oxidecitations
- 2021High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn2+ substituted CoFe2O4 Nanoparticles and Reduced Graphene Oxide as Shielding Material against Electromagnetic Pollutioncitations
- 2020Research Update: Focused ion beam direct writing of magnetic patterns with controlled structural and magnetic propertiescitations
- 2020Polypropylene Nanocomposite Filled with Spinel Ferrite NiFe2O4 Nanoparticles and In-Situ Thermally-Reduced Graphene Oxide for Electromagnetic Interference Shielding Applicationcitations
Places of action
Organizations | Location | People |
---|
article
Polypropylene Nanocomposite Filled with Spinel Ferrite NiFe2O4 Nanoparticles and In-Situ Thermally-Reduced Graphene Oxide for Electromagnetic Interference Shielding Application
Abstract
Herein, we presented electromagnetic interference shielding characteristics of NiFe2O4 nanoparticlesin-situ thermally-reduced graphene oxide (RGO)polypropylene nanocomposites with the variation of reduced graphene oxide content. The structural, morphological, magnetic, and electromagnetic parameters and mechanical characteristics of fabricated nanocomposites were investigated and studied in detail. The controllable composition of NiFe2O4-RGO-Polypropylene nanocomposites exhibited electromagnetic interference (EMI) shielding effectiveness (SE) with a value of 29.4 dB at a thickness of 2 mm. The enhanced EMI shielding properties of nanocomposites with the increase of RGO content could be assigned to enhanced attenuation ability, high conductivity, dipole and interfacial polarization, eddy current loss, and natural resonance. The fabricated lightweight NiFe2O4-RGO-Polypropylene nanocomposites have potential as a high performance electromagnetic interference shielding nanocomposite.