People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Urbánek, Pavel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Effect of calcination temperature on electrochemical performance of niobium oxides/carbon compositescitations
- 2022Synthesis and characterization of graphene oxide from residual biomasscitations
- 2021Excellent, Lightweight and Flexible Electromagnetic Interference Shielding Nanocomposites Based on Polypropylene with MnFe2O4 Spinel Ferrite Nanoparticles and Reduced Graphene Oxidecitations
- 2021High-Performance, Lightweight, and Flexible Thermoplastic Polyurethane Nanocomposites with Zn2+ substituted CoFe2O4 Nanoparticles and Reduced Graphene Oxide as Shielding Material against Electromagnetic Pollutioncitations
- 2020Polymer Labelling with a Conjugated Polymer-Based Luminescence Probe for Recycling in the Circular Economycitations
- 2020Polypropylene Nanocomposite Filled with Spinel Ferrite NiFe2O4 Nanoparticles and In-Situ Thermally-Reduced Graphene Oxide for Electromagnetic Interference Shielding Applicationcitations
- 2019Fully Inkjet-Printed CuO Sensor on Flexible Polymer Substrate for Alcohol Vapours and Humidity Sensing at Room Temperaturecitations
Places of action
Organizations | Location | People |
---|
article
Polypropylene Nanocomposite Filled with Spinel Ferrite NiFe2O4 Nanoparticles and In-Situ Thermally-Reduced Graphene Oxide for Electromagnetic Interference Shielding Application
Abstract
Herein, we presented electromagnetic interference shielding characteristics of NiFe2O4 nanoparticlesin-situ thermally-reduced graphene oxide (RGO)polypropylene nanocomposites with the variation of reduced graphene oxide content. The structural, morphological, magnetic, and electromagnetic parameters and mechanical characteristics of fabricated nanocomposites were investigated and studied in detail. The controllable composition of NiFe2O4-RGO-Polypropylene nanocomposites exhibited electromagnetic interference (EMI) shielding effectiveness (SE) with a value of 29.4 dB at a thickness of 2 mm. The enhanced EMI shielding properties of nanocomposites with the increase of RGO content could be assigned to enhanced attenuation ability, high conductivity, dipole and interfacial polarization, eddy current loss, and natural resonance. The fabricated lightweight NiFe2O4-RGO-Polypropylene nanocomposites have potential as a high performance electromagnetic interference shielding nanocomposite.