People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Scherer, Jean-Michel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Tensile and micro-compression behaviour of AISI 316L austenitic stainless steel single crystals at 20°C and 300°C: experiments, modeling and simulationscitations
- 2022Micromorphic crystal plasticity approach to damage regularization and size effects in martensitic steelscitations
- 2020Lagrange multiplier based vs micromorphic gradient-enhanced rate-(in)dependent crystal plasticity modelling and simulationcitations
- 2020Localisation de la déformation et rupture ductile dans les monocristaux : application aux aciers austénitiques inoxydables irradiés ; Strain localization and ductile fracture in single crystals : application to irradiated austenitic stainless steels
- 2020Localisation de la déformation et rupture ductile dans les monocristaux : application aux aciers austénitiques inoxydables irradiés
- 2020Strain localization and ductile fracture in single crystals : application to irradiated austenitic stainless steels ; Localisation de la déformation et rupture ductile dans les monocristaux : application aux aciers austénitiques inoxydables irradiés
Places of action
Organizations | Location | People |
---|
thesis
Localisation de la déformation et rupture ductile dans les monocristaux : application aux aciers austénitiques inoxydables irradiés
Abstract
For their excellent mechanical and oxidation properties, austenitic stainless steels are widely used in the nuclear industry, in particular for structural applications inside the core of reactors. However the substantial neutron irradiation levels these materials can be exposed to can detrimentally affect their mechanical properties. A sharp drop of toughness is indeed observed as the irradiation dose increases. Depending on the irradiation conditions (temperature, dose), mainly two kinds of radiation-induced defects can be responsible for this behaviour: dislocation Frank loops at low irradiation temperature (∼300 ◦C) and nano-voids at higher temperature (∼600 ◦C). Since these defects exist and act at the subgrain level, it motivates to study their effects at the single crystal scale. First of all, this work aims at obtaining experimental data on the mechanical behaviour of austenitic stainless steel single crystals. Then, modeling of softening induced strain localization phenomena, as those taking place in irradiated materials, is investigated. The limitations of a reduced strain gradient crystal plasticity model regarding shear bands predictions are exposed on the grounds of analytical solutions and an enhanced theory accounting for internal length evolution is proposed. Thereupon attention is given to the numerical efficiency of the finite element implementation of the aforementionned strain gradient plasticity model. Micromorphic and Lagrange multiplier based formulations of the original theory are described and compared upon finite element simulations. Eventually, one of a kind ductile fracture model of porous single crystals is proposed – including both void growth and void coalescence – in order to investigate impact of radiation-induced nano-voids on the mechanical behavior of irradiated austenitic stainless steels. The model is set up in a strain gradient framework in order to regularize ductile fracture.