Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chakravarty, Somik

  • Google
  • 4
  • 12
  • 106

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2018Effect of particle size and cohesion on powder yielding and flow106citations
  • 2018Mechanical properties of cohesionless and cohesive bulk solids : transition from non-cohesive to cohesive powderscitations
  • 2017The influence of particle shape and size distribution on aerosolisation of powderscitations
  • 2017The influence of particle shape and size distribution on aerosolisation of powderscitations

Places of action

Chart of shared publication
Morgeneyer, Martin
3 / 18 shared
Zetzener, Harald
1 / 1 shared
Kwade, Arno
1 / 20 shared
Ooi, Jin Y.
1 / 3 shared
Mohanty, Rahul
1 / 1 shared
Shi, Hao
1 / 6 shared
Luding, Stefan
1 / 13 shared
Cabiscol, Ramon
1 / 1 shared
Magnanimo, Vanessa
1 / 5 shared
Shu, Mou
2 / 2 shared
Bihan, Olivier Le
1 / 13 shared
Le Bihan, Olivier
1 / 22 shared
Chart of publication period
2018
2017

Co-Authors (by relevance)

  • Morgeneyer, Martin
  • Zetzener, Harald
  • Kwade, Arno
  • Ooi, Jin Y.
  • Mohanty, Rahul
  • Shi, Hao
  • Luding, Stefan
  • Cabiscol, Ramon
  • Magnanimo, Vanessa
  • Shu, Mou
  • Bihan, Olivier Le
  • Le Bihan, Olivier
OrganizationsLocationPeople

thesis

Mechanical properties of cohesionless and cohesive bulk solids : transition from non-cohesive to cohesive powders

  • Chakravarty, Somik
Abstract

Handling and processing of granular material release fine solid dust particles, which in an occupational setting, can severely affect worker health & safety and the overall plant operation. Dustiness or the ability of a material to release dust particles depends on several material and process parameters and is usually measured by lab-scale dustiness testers. Dustiness tests remain mostly experimental studies and lack reliable predictive ability due to limited understanding of the dust generation mechanisms and the complex interactions between the particles, wall and fluid, occurring simultaneously during dust generation. In the framework of EU ITN project T-MAPPP, this thesis uses an experimental approach to understand the dust generation mechanisms by studying: a) the effects of key bulk and particle properties on powder dustiness; b) the nature and magnitude of inter-particle, particle-wall and particle-fluid interactions; c) the evolution of dustiness and generation mechanisms for long duration powder applications. The results indicate that the dust generation mechanisms differ based on particle size and size distribution of the powder. For the given test samples and experimental conditions, the differences in powder dustiness and dust emission patterns can be characterized by three different groups of powders; powders containing fine cohesive particles, bi-modal (consisting of fine and large particles) powders and lastly, powders consisting of only large particles. While bulk cohesion, especially that stemming from van der Waals forces (measured using shear testers) determines the level of dustiness for the fine powders (in such a way that higher bulk cohesion leads to lower dustiness), both the fraction of fine particles and cohesion determine the dustiness of bi-modal powders. The large particles can emit dust only through attrition of the primary particles into smaller aerosolizable fine particles.Analysis of a traced particle motion inside a cylindrical tube agitated by a vortex shaker dustiness tester shows the cyclic nature of the particle motion. The motion (position and velocity) is symmetric and isotropic in the horizontal plane with lowest radial velocities close to the tube centre and highest at the boundary wall of the test tube. The particles tend to rise up slowly in the middle of the tube while descending rapidly close to the wall. The highest values of the velocity are found at the highest heights and close to the wall of the test tube, where the population densities are lowest. Increasing particle size and vortex rotation speeds tends to increase particle velocity whereas increase in powder mass leads to a decrease in particle velocity for rotation speeds up to 1500 rpm. For the given samples (silicon carbide, alumina and acetylene coke) and the experimental conditions, the initial dustiness is determined by the fraction of fine respirable particles present in the powder but the long-term dust generation patterns and levels are influenced by the material attrition behaviour. Dust is generated by the fragmentation and/or abrasion of primary particles, which may lead to the production and emission of fine daughter particles as dust. The samples with large irregularly shaped particles are likely to show high dustiness by shedding angular corners through inter-particle and particle-wall collisions, thus becoming more spherical in shape. On the contrary, the smaller particles are more resistant to abrasion and generate relatively less dust. While the vortex shaker dustiness tests show similar trends as an attrition tester, our study using alumina and acetylene coke indicate that the results are not interchangeable. Results from this thesis help understand the influence of powder and process parameters which may be manipulated to reduce dust generation. Furthermore, experimental results can be used to develop and validate numerical models to predict dustiness.

Topics
  • impedance spectroscopy
  • laser emission spectroscopy
  • carbide
  • Silicon
  • isotropic