People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brandt, Milan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Titanium Multi‐Topology Metamaterials with Exceptional Strengthcitations
- 2023In situ X-ray imaging of hot cracking and porosity during LPBF of Al-2139 with TiB2 additions and varied process parameters
- 2023Algorithmic detection and categorization of partially attached particles in AM structures: a non-destructive method for the certification of lattice implantscitations
- 2023Process monitoring and machine learning for defect detection in laser-based metal additive manufacturingcitations
- 2023The effect of geometric design and materials on section properties of additively manufactured lattice elementscitations
- 2023Melt pool dynamics on different substrate materials in high-speed laser directed energy deposition processcitations
- 2023A virtual stylus method for non-destructive roughness profile measurement of additive manufactured lattice structurescitations
- 2023Reducing the prosthesis modulus by inclusion of an open space lattice improves osteogenic response in a sheep model of extraarticular defectcitations
- 20203D-printed diamond-titanium composite: A hybrid material for implant engineeringcitations
- 2020On the role of wet abrasive centrifugal barrel finishing on surface enhancement and material removal rate of LPBF stainless steel 316Lcitations
- 2019Rational design of additively manufactured Ti6Al4V implants to control Staphylococcus aureus biofilm formationcitations
- 2019Cost-oriented planning of equipment for selective laser melting (SLM) in production linescitations
- 2019Selective laser melting of duplex stainless Steel 2205 : Effect of post-processing heat treatment on microstructure, mechanical properties, and corrosion resistancecitations
- 2015Fatigue life of laser clad hardfacing alloys on AISI 4130 steel under rotary bending fatigue testcitations
- 2012Thermal fatigue behavior of direct metal deposited H13 tool steel coating on copper alloy substratecitations
- 2012Copper based bi-metallic core pin using DMD: industrial evaluation
Places of action
Organizations | Location | People |
---|
article
Copper based bi-metallic core pin using DMD: industrial evaluation
Abstract
Bi-metallic core pins were prepared and the performance was evaluated in a specially designed die that had the provision to investigate core pins under semi-industrial HPDC conditions. A comparison between bi-metallic core pin with that of tool steel revealed that bi-metallic core pin performed better in terms of soldering under HPDC environment. Due to slow cooling, die holding time needed to be increased in tool steel core pin to allow sufficient solidification of the casting part. The bi-metallic core pins also operated without any catastrophic failure in the clad which particularly substantiated the applicability of DMD deposited tool steel clad on copper alloy substrate to manufacture bi-metallic tooling.