People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kozera, Paulina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Using 3D printing technology to monitor damage in GFRPs
- 2024Nanocomposites Based on Thermoplastic Acrylic Resin with the Addition of Chemically Modified Multi-Walled Carbon Nanotubescitations
- 2023Beeswax as a natural alternative to synthetic waxes for fabrication of PLA/diatomaceous earth compositescitations
- 2023Polyamide 11 Composites Reinforced with Diatomite Biofiller—Mechanical, Rheological and Crystallization Propertiescitations
- 2022Biocomposites Based on Polyamide 11/Diatoms with Different Sized Frustulescitations
- 2022Influence of Diatomaceous Earth Particle Size on Mechanical Properties of PLA/Diatomaceous Earth Compositescitations
- 2018Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Studycitations
- 2017Charpy impact tests of epoxy matrix filled with poly(urea-formaldehyde) microcapsules for self-healing applications. (Badania udarności kompozytów o osnowie epoksydowej zawierającej mikrokapsułki mocznikowo-formaldehydowe do zastosowań w materiałach samo naprawialnych)
- 2015Fabrication and characterization of composite materials based on porous ceramic preform infiltrated by elastomer
- 2015Design of phase percolated composites for military application
- 2015Comparison of numerical and experimental study of armour system based on alumina and silicon carbide ceramics
- 2014Numerical and experimental study of armour system consisted of ceramic and ceramic- elastomer composites
- 2011Microstructure and mechanical properties of cermic-metal composites obtained by pressure infiltration
- 2011Effect of specific surface fraction of interphase boundaries on mechanical properties of ceramic-metal composites, obtained by pressure infiltration
Places of action
Organizations | Location | People |
---|
article
Effect of specific surface fraction of interphase boundaries on mechanical properties of ceramic-metal composites, obtained by pressure infiltration
Abstract
Ceramic-metal composites, obtained via pressure infiltration of porous ceramics Al2O3 by cast aluminium alloy EN AC-AlSi11 (AK11), were studied. As a result, composites of two interpenetrating phases are obtained. They are composed of 30 vol.% of ceramics. The pore sizes of the ceramic preforms varied from 150 to 500 μm. The results of the X-ray tomography proved very good infiltration of the pores by the metal. The residual porosity is approximately 9 vol. %. The obtained microstructure with percolation of the ceramic and metal phases gives the composites good mechanical properties together with the ability to absorb strain energy. Image analysis has been used to evaluate the specific surface fraction of the interphase boundaries (Sv). The presented results of the studies show the effect of the surface fraction of the interphase boundaries of ceramic-metals on the composite compressive strength, hardness and Young's modulus. In addition, the mechanical properties depend on the degree of infiltration. Compression tests for the obtained composites were carried out, and Young's modulus was measured by application of the DIC (Digital Image Correlation) method. Moreover, Brinell hardness tests were performed. The composites microstructure was studied using scanning electron microscopy (SEM). SEM investigations showed that the pores are almost fully filled by the aluminium alloy. The obtained results show that the infiltration method can be used to fabricate composites with percolation of the microstructure. However, the research is at its early stage and will be continued in the sphere of the characteristics of interphase boundaries.