Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sobczak, Jerzy

  • Google
  • 2
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016High temperature interaction between molten AlSr10 alloy and glass-like carbon substratecitations
  • 2016Effect of HNT on the microstructure, thermal and mechanical properties of Al/FA-CS-HNT composites produced by GPIcitations

Places of action

Chart of shared publication
Sobczak, Natalia
2 / 8 shared
Kudyba, Artur
1 / 4 shared
Boczkowska, Anna
2 / 87 shared
Siewiorek, Aleksandra
2 / 2 shared
Kozera, Rafał
2 / 22 shared
Piotr, Malczyk
1 / 2 shared
Andrzej, Czulak
1 / 2 shared
Gude, Maik
1 / 9 shared
Homa, Marta
1 / 2 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Sobczak, Natalia
  • Kudyba, Artur
  • Boczkowska, Anna
  • Siewiorek, Aleksandra
  • Kozera, Rafał
  • Piotr, Malczyk
  • Andrzej, Czulak
  • Gude, Maik
  • Homa, Marta
OrganizationsLocationPeople

article

High temperature interaction between molten AlSr10 alloy and glass-like carbon substrate

  • Sobczak, Natalia
  • Kudyba, Artur
  • Boczkowska, Anna
  • Sobczak, Jerzy
  • Siewiorek, Aleksandra
  • Kozera, Rafał
Abstract

Wettability of glass-like carbon substrate (Cglc) by molten Al-10 wt.% Sr alloy (AlSr10) has been examined by a sessile drop method at 700-800 °C for 120 min under vacuum. Non-contact heating to the test temperature combined with the removal of oxide film from the alloy drop was done using capillary purification procedure by squeezing the liquid alloy from a capillary. The influence of the type of capillary on wetting behavior of AlSr10/Cglc couples was noticed. Molten AlSr10 alloy does not wet Cglc at about 700 °C forming the contact angles of 111° with graphite capillary and 141° with alumina capillary. At 800 °C with alumina capillary, non-wetting-to-wetting transition takes place resulting in a final contact angle of 70°. After testing at 800 °C, the AlSr10/Cglc interface was revealed at the test temperature directly in the vacuum chamber by the drop suction procedure. Structural characterization of the interfaces by scanning and transmission electron microscopy combined with energy-dispersive x-ray spectroscopy and by scanning probe microscopy combined with Auger electron spectrometry did not show any new phases formed with Sr. It suggests that the dominant role in wettability improvement by alloying Al with 10 wt.% Sr was related with significant lowering of the surface tension of liquid metal and adsorption of Sr at the interface.

Topics
  • surface
  • Carbon
  • phase
  • glass
  • glass
  • transmission electron microscopy
  • forming
  • Energy-dispersive X-ray spectroscopy
  • spectrometry
  • scanning probe microscopy