Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Frydrych, Karol

  • Google
  • 3
  • 8
  • 14

National Centre for Nuclear Research

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Texture-Based Optimization of Crystal Plasticity Parameters: Application to Zinc and Its Alloy7citations
  • 2021Texture-Based Optimization of Crystal Plasticity Parameters: Application to Zinc and Its Alloy7citations
  • 2019Crystal plasticity finite element simulations of the indentation testcitations

Places of action

Chart of shared publication
Kowalczyk-Gajewska, Katarzyna
1 / 1 shared
Schell, Norbert
1 / 180 shared
Skorupska, Monika
1 / 5 shared
Bieda, Magdalena
1 / 3 shared
Jarzębska, Anna
1 / 4 shared
Virupakshi, Saketh
1 / 1 shared
Sztwiertnia, Krzysztof
1 / 3 shared
Chulist, Robert
1 / 23 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Kowalczyk-Gajewska, Katarzyna
  • Schell, Norbert
  • Skorupska, Monika
  • Bieda, Magdalena
  • Jarzębska, Anna
  • Virupakshi, Saketh
  • Sztwiertnia, Krzysztof
  • Chulist, Robert
OrganizationsLocationPeople

article

Crystal plasticity finite element simulations of the indentation test

  • Frydrych, Karol
Abstract

The goal of the paper is to report the successful simulations of the nanoindentation problem. The finite-strain isotropic elasto-plasticity and crystal elasto-plasticity models used for the simulations are described. The developed contact formulation describing the contact with rigid surface approximating pyramidal indenter is presented. Both tensile stress-strain and indentation load-penetration curves obtained with a single set of material parameters are presented to be in the satisfactory agreement with experimental data. It seems that such a result is presented for the first time

Topics
  • impedance spectroscopy
  • surface
  • simulation
  • nanoindentation
  • plasticity
  • isotropic
  • crystal plasticity