People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kozera, Rafał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Biocomposites Based on Polyamide 11/Diatoms with Different Sized Frustulescitations
- 2020Characterization of thermoplastic nonwovens of copolyamide hot melt adhesives filled with carbon nanotubes produced by melt-blowing methodcitations
- 2020Effect of the areal weight of CNT-doped veils on CFRP electrical propertiescitations
- 2019Carbon Fiber Reinforced Polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubescitations
- 2018Nonwovens fabrics with carbon nanotubes used as a interleaves in CFRP
- 2018Application of electroless deposition for surface modification of the multiwall carbon nanotubescitations
- 2018Nonwoven fabrics with carbon nanotubes used as interleaves in CFRPcitations
- 2017Relationship between processing and electrical properties in SEBS/CNT nanocompositescitations
- 2017Effect of Carbon Nanotubes Deposition with Metallic Coatings on Electrical Conductivity of Epoxy Based Nanocomposites
- 2017Charpy impact tests of epoxy matrix filled with poly(urea-formaldehyde) microcapsules for self-healing applications. (Badania udarności kompozytów o osnowie epoksydowej zawierającej mikrokapsułki mocznikowo-formaldehydowe do zastosowań w materiałach samo naprawialnych)
- 2017Effect of functionalized carbon nanotubes on properties of hot melt copolyamide. (Wpływ funkcjonalizowanych nanorurek węglowych na właściwości termotopliwego kopoliamidu)
- 2016High temperature interaction between molten AlSr10 alloy and glass-like carbon substrate
- 2016Effect of HNT on the microstructure, thermal and mechanical properties of Al/FA-CS-HNT composites produced by GPI
- 2015Quantitative Image Analysis of Ni-P Coatings Deposited on Carbon Fiberscitations
- 2015Preparation and characterization of CVD-TiN-coated carbon fibers for applications in metal matrix composites
- 2014Manufacturing and characterization of thermoplastic nanocomposite fibers with carbon nanotubes
- 2014Textile reinforced carbon fibre/aluminium matrix composites for lightweight applications
- 2014Electroless deposition of Ni-P/nano SiO2 composite coatings on PET and carbon fibre substrates
- 2013Polymer-based nanocomposite fibers as a precursor for non-woven fabrics
- 2011Effect of electroless metallization parameters of carbon fibres on Ni-P coatings
- 2011Catalytic activation of carbon fibres in electroless process of fabrication of metallized carbon fabrics
- 2010Rola parametrów bezprądowej metalizacji w procesie wytwarzania pre-kompozytu Ni-P/włókna węglowe
Places of action
Organizations | Location | People |
---|
booksection
Polymer-based nanocomposite fibers as a precursor for non-woven fabrics
Abstract
The intense progress in the field of nanomaterials contribute to search repeatedly novel combinationsbetween the various classes of materials. As a result the nanocomposites are obtained that is two component system where in the matrix at least one dimension of the filler is located at the nano-scale. The main target of our study was the manufacturing process of nanocomposites fibers consist of thermoplastic polymer matrix -polyamides 11(PA11) and carbon nanotubes (MWCNTs) as a filler. The one of the major features of the polymer nanocomposites with CNTs is low percolation threshold, therefore the three-dimensional carbon nanotubes are able to conduct electrical charges even at low nanofiller contents. While the composites are produced as a fiber, the applied form of target product is veil - kind offabric composed of previous extruded fibres with carbon nanotubes .The method of manufacturing includes, first of all, the homogenization process of carbon nanotubes with thermoplastic polymerthen extruding the fibers from the previously made pellets and pressing them into the desired veil with specific weight and dimensions. Due to even a slight addition of carbon nanotubes into the polymer melt,the viscosity of the mixture significantly increases. Therefore the parameters of all processes were firstly adjusted and then optimized according to the stock of the filler. We managed to obtain the thin fibers containing CNTs from the range of1% - 6 wt.%.