People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Słoma, Marcin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Electromagnetic field controlled domain wall displacement for induced strain tailoring in BaTiO3-epoxy nanocompositecitations
- 2021Additive manufacturing of electronics from silver nanopowders sintered on 3D printed low-temperature substratescitations
- 2021Carbon nanotube-based composite filaments for 3d printing of structural and conductive elementscitations
- 2020Conductive ABS/Ni Composite Filaments for Fused Deposition Modeling of Structural Electronicscitations
- 2020Flexible Gas Sensor Printed on a Polymer Substrate for Sub-ppm Acetone Detectioncitations
- 2019Mechanical and thermal properties of ABS/iron composite for fused deposition modelingcitations
- 2019Photonic curing of silver paths on 3D printed polymer substratecitations
- 2019Heterophase materials for fused filament fabrication of structural electronicscitations
- 2018Electrically conductive acrylonitrile butadiene styrene(ABS)/copper composite filament for fused deposition modelingcitations
- 2018Characterization of PMMA/BaTiO3 Composite Layers Through Printed Capacitor Structures for Microwave Frequency Applicationscitations
- 2016Microwave properties of sphere-, flake-, and disc-shaped BaFe<inf>12</inf>O<inf>19</inf> nanoparticle inks for high-frequency applications on printed electronicscitations
- 2016Rheology of inks for various techniques of printed electronicscitations
- 2015Perovskite-type KTaO 3–reduced graphene oxide hybrid with improved visible light photocatalytic activitycitations
- 2015Influence of electric field on separation and orientation of carbon nanotubes in spray coated layerscitations
- 2015Simple optical method for recognizing physical parameters of graphene nanoplatelets materials
- 2014Thick Film Polymer Composites with Graphene Nanoplatelets for Use in Printed Electronics citations
- 2014Optical measurements of selected properties of nanocomposite layers with graphene and carbon nanotubes fillerscitations
- 2013Miniaturized coupled-line directional coupler designed with the use of photoimageable Thick-Film technology
- 2012Screen printed polymer pastes with carbon nanotubes for printed electronics applications
- 2012SAC 305 solder paste with carbon nanotubes - Part I: Investigation of the influence of the carbon nanotubes on the SAC solder paste propertiescitations
- 2010Investigation of properties of the SAC solder paste with the silver nanoparticle and carbon nanotube additives and the nano solder jointscitations
Places of action
Organizations | Location | People |
---|
booksection
Screen printed polymer pastes with carbon nanotubes for printed electronics applications
Abstract
<p>Nanomaterials are known for their superior properties, what makes them the mostinvestigated group of materials these days. These properties are utilized by many researchgroups in new type of polymer thick film compositions for printed electronicsapplications. This new trend in production of electronic devices allows to manufactureelectronic circuits and elements using the printing techniques such as screen printing,offset, or ink-jet. Fabricated this way electronic elements are easy to implement and lowcost,what is important in short production cycles or in fabrication of disposableelectronics.The use of nanostructures in the manufacture of the composition for printedelectronics has opened new possibilities in the production of such structures. Exceptionalmechanical and electrical properties of carbon nanotubes can deliver a new category ofproperties to composite materials such as polymer thick films. Increasing interest inapplying nanotubes in the field of printed electronics has led to continued efforts todevelop good dispersion techniques of nanotubes in polymer vehicles. Many applicationsof nanotube/polymer composites have been developed until now, such as biochemicaland gas sensors, electromagnetic shielding, field effect transistors and diodes, but alsotransparent electrodes, elastic resistors and thermal sensors.This chapter reviews current achievements in the field of thick films with carbonnanotubes with two particular topics. Presented in research papers fabrication techniquesof polymer compositions with carbon nanotubes for screen printing are summarized andapplications of nanotube/polymer nanocomposite layers are highlighted, along withauthors achievements in this field. © 2012 by Nova Science Publishers, Inc. All rights reserved.</p>