Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Micheli, Pierre De

  • Google
  • 1
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Towards the simulation of the whole manufacturing chain processes with FORGE®citations

Places of action

Chart of shared publication
Scholtes, Benjamin
1 / 11 shared
Bay, François
1 / 14 shared
Lasne, Patrice
1 / 9 shared
Barlier, Julien
1 / 3 shared
Settefrati, Amico
1 / 9 shared
Bernacki, Marc
1 / 123 shared
Marie, Stéphane
1 / 10 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Scholtes, Benjamin
  • Bay, François
  • Lasne, Patrice
  • Barlier, Julien
  • Settefrati, Amico
  • Bernacki, Marc
  • Marie, Stéphane
OrganizationsLocationPeople

document

Towards the simulation of the whole manufacturing chain processes with FORGE®

  • Scholtes, Benjamin
  • Bay, François
  • Lasne, Patrice
  • Barlier, Julien
  • Micheli, Pierre De
  • Settefrati, Amico
  • Bernacki, Marc
  • Marie, Stéphane
Abstract

Following the metal composition and the microstructure evolution during the whole manufacturing chain is becoming a key point in the metal forming industry to better understand the processes and reach the increasing quality requirements for the parts. Thus, providing a simulation tool able to model the whole chain becomes critical. Physical phenomena occurring during the processes are nowadays better understood, providing always more relevant models for numerical simulation. However, important numerical challenges still exist in order to be able to run those simulations with the required accuracy. This article shows how FORGE® tackles those issues in order to provide highly accurate microstructure and surface treatments simulation features applied on real industrial processes.

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • simulation
  • forming