People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Latuch, Jerzy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2019Effect of silver content in Zr<inf>55</inf>Cu<inf>30</inf>Ni<inf>5</inf>Al<inf>10−x</inf>Ag<inf>X</inf> alloys on the supercooled liquid stability analysed by TTT diagrams
- 2017Influence of cobalt content on the structure and hard magnetic properties of nanocomposite (Fe,Co)-Pt-B alloyscitations
- 2017Isothermal Stability and Selected Mechanical Properties of Zr48Cu36Al8Ag8 Bulk Metallic Glasscitations
- 2011Soft magnetic amorphous Fe–Zr–Si(Cu) boron-free alloyscitations
- 2011Correlation between the size of Nd<inf>60</inf>Fe<inf>30</inf>Al <inf>10</inf> sample, cast by various techniques and its coercivity
- 2010Structural and magnetic properties of the ball milled Fe <inf>56</inf> Pt <inf>24</inf> B <inf>20</inf> alloycitations
- 2010Novel amorphous Fe-Zr-Si(Cu) boron-free alloyscitations
- 2010Structural transformations and magnetic properties of Fe <inf>60</inf> Pt <inf>15</inf> B <inf>25</inf> and Fe <inf>60</inf> Pt <inf>25</inf> B <inf>15</inf> nanocomposite alloyscitations
- 2009Magnetic properties of the Fe48.75 Pt 26.25 B 25 nanostructured alloycitations
- 2008Effect of processing parameters on the structure and magnetic properties of Nd60Fe30Al10 alloycitations
- 2007Crystallization behaviour of the Fe <inf>60</inf> Co <inf>10</inf> Ni <inf>10</inf> Zr <inf>7</inf> B <inf>13</inf> metallic glasscitations
- 2005Crystallization kinetics of Al-Mm-Ni-(Co,Fe) alloyscitations
- 2005Amorphous bulk alloys from Al-Mm-Ni system produced by hot compaction
- 2004Crystallisation behaviour of rapidly quenched cast irons with small amount of boroncitations
- 2004Magnetic and transport properties of nanocrystallizing supercooled amorphous alloy Fe74Al4Ga2P11B4Si4Cu1citations
Places of action
Organizations | Location | People |
---|
booksection
Amorphous bulk alloys from Al-Mm-Ni system produced by hot compaction
Abstract
<p>Recent studies have shown that amorphous alloys from Al-based ternary systems, containing lanthanide metal and late transition metal can be fabricated. Such materials are characterized by good mechanical properties. The most common way of production those alloys is melt spinning, giving a ribbon as a final product. It is possible to replace lanthanide metal by mischmetal. The mischmetal used in this study contains: Ce-50,3 % at., La-43,5 % at, Pr-5,9 % at., Nd-0,3 % at. This is a way to reduce the costs of the raw materials because Mm is several times cheaper than pure lanthanide elements. This study has two main objectives. First, to check the possibility to replace yttrium in the Al-Y-Ni system alloys by mischmetal, without losing the structure and mechanical properties. Second goal was to produce the bulk amorphous material. Several alloys from Al-Mm-Ni system, were investigated. The as quenched ribbons were milled to powder and then semi-isostatically compacted at elevated temperature to bulk material. After every step of this investigation, the XRD and DSC measurements were undertaken to distinguish eventual changes occurring during the process (eg. producing the ribbon, milling, compacting). Mechanical properties were characterized by Vickers microhardness. The results of the studies show the possibility to produce bulk amorphous materials from the above mentioned system in three-step production cycle. The microhardness values are good or even better compared to Al-RE-Ni alloys. Microhardness depends not only on the chemical composition of the alloy but also on the temperature of the compacting process.</p>