People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kolano-Burian, Aleksandra
Łukasiewicz Research Network - Institute of Non-Ferrous Metals
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopants.citations
- 2022Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopantscitations
- 2021LTspice Implementation of Gyrator-Capacitor Magnetic Circuit Model Considering Losses and Magnetic Saturation for Transient Simulations of Switching Mode Power Supplies Utilizing Inductive Elements with Cores Made of Amorphous Alloys
- 2021Structure and magnetic properties of thermodynamically predicted rapidly quenched Fe85-xCuxB15 alloyscitations
- 2020Influence of copper addition and heat treatment parameters on nanocrystallization process of Fe-Co-Mo-B-Si amorphous ribbons with high saturation magnetization about 1.6 Tcitations
- 2019Composite Nanofibers Containing Multiwall Carbon Nanotubes as Biodegradable Membranes in Reconstructive Medicinecitations
- 2017Magnetocaloric Properties of Mn1.1Fe0.9P0.5As0.5−xGex (0 ≤ x ≤ 0.1) Compoundscitations
- 2016Chemical hydrogenation of La(Fe,Si) family of intermetallic compoundscitations
- 2016Effect of changing P/Ge and Mn/Fe ratios on the magnetocaloric effect and structural transition in the (Mn,Fe)2 (P,Ge) intermetallic compoundscitations
- 2009Structure and magnetic properties of magnetostrictive rapidly-quenched alloys for force sensors applicationscitations
- 2009Magnetocaloric effect in Fe-Cr-Cu-Nb-Si-B amorphous materialscitations
- 2005Magnetically Soft Nanocrystalline Materials Obtained by Devitrification of Metallic Glasses
- 2004Effect of Co addition on nanocrystallization and soft magnetic properties of (Fe1−xCox)73.5Cu1Nb3Si13.5B9 alloyscitations
Places of action
Organizations | Location | People |
---|
booksection
Magnetically Soft Nanocrystalline Materials Obtained by Devitrification of Metallic Glasses
Abstract
This paper presents the main features of magnetically soft metallic glasses and nanocrystalline materials obtained by controlled crystallization of metallic glasses, a brief description of the principal methods of nanocrystallization as well as the recent developments in nanocrystalline materials for high-temperature applications. Two groups of alloys were investigated: (Fe, Co)-Si-Nb-Cu-B (FINE-MET-type) and (Fe, Co)-(Zr, Nb, Hf)-Cu-B (HITPERM-type). For FINEMET-type alloys it was found that the optimum combination of magnetic properties coercivity, Curie temperature, magnetostriction) is obtained when Fe:Co ratio is about 1:1. For HITPERM-type alloys, the best performance and stability are observed when alloys contain Hf, and the worst in the case of Nb. Optimum Hf content is 7 at.\%, and 6 at.\% B. The HITPERM-type alloys exhibit good stability of properties at 500°C for at least 700 hours.