Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kamińsk, Łukasz

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Synthesis and Characterization of Nickel Aluminate Spinel (NiAl2O4) Prepared from the Equilibrium Mixture of Al2O3 and NiOcitations

Places of action

Chart of shared publication
Miazga, Aleksandra
1 / 35 shared
Zygmuntowicz, Justyna
1 / 57 shared
Konopka, Katarzyna
1 / 45 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Miazga, Aleksandra
  • Zygmuntowicz, Justyna
  • Konopka, Katarzyna
OrganizationsLocationPeople

article

Synthesis and Characterization of Nickel Aluminate Spinel (NiAl2O4) Prepared from the Equilibrium Mixture of Al2O3 and NiO

  • Miazga, Aleksandra
  • Zygmuntowicz, Justyna
  • Konopka, Katarzyna
  • Kamińsk, Łukasz
Abstract

The aim of this study was the synthesis and characterization of nickel aluminate spinel (NiAl2O4) prepared from the equilibrium mixture of Al2O3 and NiO. The materials were produced by the solid phase synthesis. In the experiments the following powders were used: α-Al2O3 TM-DAR from Taimei Chemicals (Japan) of an average particle size 133 nm and density 3.96g/cm3 and NiO powder from Sigma-Aldrich of an average particle size 200 nm and density 6.67 g/cm3. The preliminary calcination was carried out at two temperatures: 1000°C and 1200°C. The final sintering of the samples was performed at 1600°C. The characteristics of the powder after calcination and sintered samples were performed using X-ray diffraction studies (XRD), energy dispersive X-ray analysis (EDS) and scanning electron microscopy (SEM). The studies on the composites confirmed the presence of nickel aluminate (NiAl2O4) in whole volume of the material.

Topics
  • density
  • nickel
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • experiment
  • composite
  • Energy-dispersive X-ray spectroscopy
  • sintering